High Gain Rectangular Dielectric Resonator Antenna with a Superstrate for X band Applications

Author(s):  
A.A. Abdulmajid ◽  
S. Khamas ◽  
K.A.S. Al-Khateeb
2021 ◽  
Author(s):  
SACHIN KUMAR YADAV ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract A circularly polarized hollow dielectric resonator antenna (CPHDRA) is designed for X-band applications. Rectangular dielectric resonator (RDR) is used as a radiator element, fed by a quarter-wave transformer (QWT) feedline. By performance of the RDR antenna, an air cylindrical rod structure is extracted from RDR to enhance the gain and impedance bandwidth. Two parasitic strips are placed on the top of the RDR to achieve circular polarization with reported ≤ 3-dB axial ratio (AR) bandwidth for X-band applications. In this article, UWB antenna covers range from 2.74 to 10.4GHz by using asymmetrical defective ground structure (DGS). In near field of the dielectric resonator, three different radiating modes namely HE11δ, HE21δ, HE23δ, and HE32δ are at 4.4, 6, 8.8, and 9.9 GHz. For the generation of circular polarization (CP), two orthogonal modes are generated at 8.8 and 9.9 GHz as per XZ and YZ planes. It has reported 23.8 % (8 to 10.1 GHz) of 3-dB AR bandwidth. The simulated and measured impedance bandwidths are 118.46 % and 121.12 % along with a peak gain of 6.55 dB without the use of a metallic reflector. By using a metallic reflector suspended in the bottom side of the substrate with a distance of 13.1mm is reported along with the peak gain of 9.8 dBi.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sounik Kiran Kumar Dash ◽  
Taimoor Khan ◽  
Binod Kumar Kanaujia ◽  
N. Nasimuddin

A wideband and high gain dielectric resonator antenna (DRA) operating in hybrid HEM11δ mode is proposed. The investigated geometry employs one cylindrical dielectric resonator partially covered with a transparent dielectric superstrate and backed up by a single side metal coated dielectric reflector plane. The reflector is dedicated for gain enhancement while the superstrate is employed for merging of two resonant bands resulting in a single wide band. The dielectric resonator is excited by simple microstrip feed slot coupling technique and operates over X-band, ranging from 7.12 GHz to 8.29 GHz, that is, of 15.18% impedance matching bandwidth with 11.34 dBi peak gain. The different development stages like standalone DRA, DRA with superstrate, DRA with reflector, and DRA with both superstrate and reflector plane with respect to bandwidth and gain performances are analyzed properly. To the best of authors’ knowledge, this is the first time this type of combination of both superstrate and reflector plane is demonstrated in DRA engineering. An antenna prototype was fabricated and characterized and a very good agreement is achieved between the simulated and measured results.


Sign in / Sign up

Export Citation Format

Share Document