scholarly journals Wideband Cylindrical Dielectric Resonator Antenna Operating in HEM11δ Mode with Improved Gain: A Study of Superstrate and Reflector Plane

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sounik Kiran Kumar Dash ◽  
Taimoor Khan ◽  
Binod Kumar Kanaujia ◽  
N. Nasimuddin

A wideband and high gain dielectric resonator antenna (DRA) operating in hybrid HEM11δ mode is proposed. The investigated geometry employs one cylindrical dielectric resonator partially covered with a transparent dielectric superstrate and backed up by a single side metal coated dielectric reflector plane. The reflector is dedicated for gain enhancement while the superstrate is employed for merging of two resonant bands resulting in a single wide band. The dielectric resonator is excited by simple microstrip feed slot coupling technique and operates over X-band, ranging from 7.12 GHz to 8.29 GHz, that is, of 15.18% impedance matching bandwidth with 11.34 dBi peak gain. The different development stages like standalone DRA, DRA with superstrate, DRA with reflector, and DRA with both superstrate and reflector plane with respect to bandwidth and gain performances are analyzed properly. To the best of authors’ knowledge, this is the first time this type of combination of both superstrate and reflector plane is demonstrated in DRA engineering. An antenna prototype was fabricated and characterized and a very good agreement is achieved between the simulated and measured results.

Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 109-116
Author(s):  
Nipun K. Mishra ◽  
Soma Das ◽  
Dinesh K. Vishwakarma

Abstract In present work a wide band and high gain cylindrical dielectric resonator antenna working in X-band has been designed and validated experimentally. First the bandwidth of the antenna has been enhanced by placing the thin dielectric layer between antenna and feed network. Next gain of the antenna has been increased by placing a layer of high dielectric material at nearly λ/2 distance as superstrate. The proposed design with impedance bandwidth of 3 GHz and gain nearly 11dBi could be used in satellite communication and other wideband wireless applications operating in X-band.


2021 ◽  
Author(s):  
SACHIN KUMAR YADAV ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract A circularly polarized hollow dielectric resonator antenna (CPHDRA) is designed for X-band applications. Rectangular dielectric resonator (RDR) is used as a radiator element, fed by a quarter-wave transformer (QWT) feedline. By performance of the RDR antenna, an air cylindrical rod structure is extracted from RDR to enhance the gain and impedance bandwidth. Two parasitic strips are placed on the top of the RDR to achieve circular polarization with reported ≤ 3-dB axial ratio (AR) bandwidth for X-band applications. In this article, UWB antenna covers range from 2.74 to 10.4GHz by using asymmetrical defective ground structure (DGS). In near field of the dielectric resonator, three different radiating modes namely HE11δ, HE21δ, HE23δ, and HE32δ are at 4.4, 6, 8.8, and 9.9 GHz. For the generation of circular polarization (CP), two orthogonal modes are generated at 8.8 and 9.9 GHz as per XZ and YZ planes. It has reported 23.8 % (8 to 10.1 GHz) of 3-dB AR bandwidth. The simulated and measured impedance bandwidths are 118.46 % and 121.12 % along with a peak gain of 6.55 dB without the use of a metallic reflector. By using a metallic reflector suspended in the bottom side of the substrate with a distance of 13.1mm is reported along with the peak gain of 9.8 dBi.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Feibiao Dong ◽  
Limei Xu ◽  
Wenbin Lin ◽  
Tianhong Zhang

By loading two printed patches to the dielectric resonator antenna (DRA), a compact wide-band hybrid dielectric resonator antenna with enhanced gain and low cross-polarization is presented. The proposed antenna utilizes a combination of a rectangular dielectric resonator and two printed patches. Due to the hybrid design, multiple resonances were obtained. By adding two air layers between the dielectric resonator and the printed patches, the bandwidth has been significantly improved. Compared to the traditional hybrid dielectric resonator antenna, the proposed antenna can achieve wide bandwidth, high gain, low cross-polarization, and even small size simultaneously. The prototype of the proposed antenna has been fabricated and tested. The measured −10 dB return loss bandwidth is 25.6% (1.7–2.2 GHz). The measured antenna gains are about 6.3 and 8.2 dBi in the operating frequency band. Low cross-polarization levels of less than −28.5 dB and −43 dB in the E-plane and H-plane are achieved. Moreover, the overall dimensions of the antenna are only 67 × 67 × 34 (mm3). The proposed antenna is especially attractive for small base antenna applications.


Author(s):  
Anuj Kumar Ojha ◽  
A. V. Praveen Kumar

Abstract In this work, the authors report the operation of a cylindrical dielectric resonator antenna (CDRA) in the high gain HEM13 δ mode, for the first time. This mode, excited with a standard microstrip slot, radiates in the broadside direction with gain in the range of 8−10 dBi. It is shown that through feed optimization, the HEM13 δ mode can be excited dominantly by suppressing the fundamental HEM11 δ mode of the CDRA. Detailed simulation studies show that the HEM13 δ mode is supported by cylindrical dielectric resonators with an aspect ratio (radius to height ratio or a/d) >1, and it resonates at a frequency approximately 2.2 times that of the fundamental HEM11 δ mode. The above features of the HEM13 δ mode CDRA can be used as approximate design rules. For a CDRA with dielectric constant ɛr = 24, diameter 2a = 19.43 mm, and height d = 7.3 mm (a/d = 1.3), the HEM13 δ mode is excited at 6.125 GHz with a peak gain of 10.14 dBi in simulation. Corresponding values from prototype measurement are 5.981 GHz and 9.62 dBi, respectively for the resonant frequency and the gain, verifying the simulation.


2021 ◽  
Author(s):  
Subham Banerjee ◽  
Md Sujauddin Ahmmed ◽  
Arun Kumar Ray ◽  
Pravakar Mallick ◽  
Raghvendra Kumar Chaudhury

Author(s):  
Sharif Ahmed Qasem ◽  
Tan Kim Geok ◽  
Mohamad Yusoff Alias ◽  
Ferdous Hossain ◽  
Naif Alsowaidi

Sign in / Sign up

Export Citation Format

Share Document