Design of an integrated protocol architecture for Micro-VSAT networks

Author(s):  
A. Azcorra
Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2550
Author(s):  
Jean Park ◽  
Juyeop Kim

LoRa Wide Area Networks (LoRaWAN) can provide a connectivity service to Internet of Things (IoT) for an extremely long run-time and with low power consumption. As the LoRaWAN is extensively applied to various IoT scenarios, LoRaWAN solutions face a flexibility issue in terms of inter-operating with various kinds of LoRa modem hardware and protocol scenarios. In this regard, we design a unified protocol architecture for LoRaWAN physical layer, which can flexibly correspond to various deployment and operational cases. The new protocol architecture includes a hardware abstraction sub-layer, which contains generalized handlers for configuring various kinds of the LoRa modem, and a physical procedure sub-layer that structurally models the physical layer procedures of the LoRaWAN based on Finite State Machine(FSM). We illustrate the flexibility of the new protocol architecture by implementing an extensive feature that enhances the packet reception ratio based on the status of preamble detection. For evaluating the new protocol architecture, we implement the LoRaWAN physical layer protocol on real-time embedded systems and conduct experiments. The experimental results show that the proposed protocol robustly transmits and receives packets and generates little amount of additional burden compared with the conventional open source protocol provided by SemTech.


Author(s):  
Aijun Chen ◽  
Liping Di ◽  
Yuqi Bai ◽  
Yaxing Wei

The definition of the Grid computing and its application to geoinformatics are introduced. Not only the comparison of power Grid and computing Grid is illustrated, also Web technology and Grid technology are compared. The Hourglass Model of Grid architecture is depicted. The layered Grid architecture, relating to Internet protocol architecture, consists of the fabric (computer, storage, switches, etc.) layer, connectivity layer, resource layer, collective layer, and application layer. Grid computing has been applied to many disciplines and research areas, such as physics, Earth science, astronomy, bioinformatics, etc. By applying the Grid computing to Open Geospatial Consortium, Inc.’s Web services and geospatial standards from International Organization for Standardization, US Federal Geographic Data Committee and US NASA, a geospatial Grid is proposed here, which consisting of Grid-managed geospatial data and Grid-enabled geospatial services.


Author(s):  
Stefan Götz ◽  
Christian Beckel ◽  
Tobias Heer ◽  
Klaus Wehrle

2013 ◽  
Vol 303-306 ◽  
pp. 223-230 ◽  
Author(s):  
Xiu Juan Du ◽  
Ke Jun Huang ◽  
Fan Liu ◽  
Zhen Xing Feng ◽  
Sheng Lin Lan

Underwater sensor network (UWSN) adopts acoustic communication and is characterized by high delay, low bandwidth, high error rate, low energy-consumption requirement and sparse topology, which lead to conventional network protocols for terrestrial WSN or other wireless multi-hop networks are unable to satisfy the performance of UWSN. On the other hand, the limited resources of energy, CPU and memory cause that the protocol stack running on the sensor node shouldn’t be much complicated. The paper proposes a novel, green network protocol architecture model tailored for UWSN, referred to as Micro-ANP, which is three layered structure including application, network transport, and physical layer. Furthermore, basing on Micro-ANP we realize the packet size optimization of UWSN through Matlab simulation. Micro-ANP protocol architecture and packet size optimization improve the energy efficiency of UWSN, prolong the network lifetime and achieve green network while meeting the requirement of QoS with the constraints of limited resource.


Sign in / Sign up

Export Citation Format

Share Document