Acoustic sounder applications: remote sensing of sea breeze and radio propagation studies over tropical India

Author(s):  
D. Narayana Rao
2007 ◽  
Vol 7 (6) ◽  
pp. 15989-16022 ◽  
Author(s):  
C. Talbot ◽  
C. Leroy ◽  
P. Augustin ◽  
V. Willart ◽  
H. Delbarre ◽  
...  

Abstract. Experimental and modelling results of the dynamics of a sea-breeze event and its effects on the three-dimensional (3-D) redistribution of the gaseous SO2 are presented within the framework of a particularly flat and industrialized coastal area of the North Sea. The measurements were carried out at ground level with the stations of the local air quality monitoring agency and with two optical remote sensing instruments. The remote sensing setup consisted of a lidar and a sodar whose measurements allowed us to determine the layers of the lower troposphere during a sea-breeze event up to 1400 m height. The experimental results and measurements of industrial SO2 in the atmosphere are compared to the numerical simulations of the 3-D atmospheric non-hydrostatic chemistry model Meso-NH-C. The transport and the dispersion of gaseous SO2 are studied above the neighbouring industrial and urban areas. We show how the evolution and the redistribution of the SO2 concentrations at ground level are related to the structure and the dynamics of the sea breeze. The gaseous SO2 is brought back inland as soon as the sea breeze commences, mixed inner the thermal internal boundary layer and transported inland by the gravity current up to the sea-breeze front, where gases and particles are uplifted. The elevation of the polluted air masses by the sea-breeze system favours the nucleation of the emitted compounds due to the increase of the relative humidity in the uplifted layer. We show how the dynamical conditions during and after the sea breeze lead to storage of SO2 near and above the emitting industrial coastal areas, and favour the formation of acidic aerosol particles.


2020 ◽  
Author(s):  
Dorita Rostkier-Edelstein ◽  
Pavel Kunin ◽  
Pinhas Alpert

<p>The atmospheric dynamics in the Dead Sea Valley has been studied for decades. However, the studies relied mostly on surface observations and simple coarse-model simulations, insufficient to elucidate the complex flow in the area. In this seminar I will present a first study using high resolution (temporal and spatial) and sophisticate both, measurements and modeling tools. We focused on afternoon hours during summer time, when the Mediterranean Sea breeze penetrates into the Dead Sea Valley and sudden changes of wind, temperature and humidity occur in the valley.</p><p>An intense observations period in the area, including ground-based remote sensing and in-situ observations, took place during August and November 2014. The measurements were conducted as part of the Virtual Institute DEad SEa Research Venue (DESERVE) project using the KITcube profiling instruments (wind lidars, radiometer and soundings) along with surface Energy Balance Station. These observations enabled analysis of the vertical profile of the atmosphere at one single location at the foothills of Masada, about 1 km west of the Dead Sea shore.</p><p>High resolution (1.1 km grid size) model simulations were conducted using the Advanced Research Weather version of the Weather Forecast and Research mesoscale model (WRF). The simulations enabled analysis of the 3D flow at the Dead Sea Valley, information not provided by the observations at a single location. Sensitivity tests were run to determine the best model configuration for this study.</p><p>Our study shows that foehn develops in the lee side of the Judean Mountains and Dead Sea Valley in the afternoon hours when the Mediterranean Sea breeze reaches the area. The characteristics of the Mediterranean Sea breeze penetration into the valley and of the foehn (e.g. their depth) and the impact they have on the boundary layer flow in the Dead Sea Valley (e.g. sudden changes in temperature, humidity and wind) are conditioned to the daily synoptic and mesosocale conditions. In the synoptic scale, the depth of the seasonal pressure trough at sea level and the height of inversion layers play a significant role in determining the breeze and foehn characteristics. In the mesoscale, the intensity of the Dead Sea breeze and the humidity brought by it determines the outcomes at the time of Mediterranean Sea breeze penetration and foehn development. Dynamically, the foehn is associated with a hydraulic jump.</p><p>Hypothetical model simulations with modified terrain and with warmer Mediterranean Sea surface temperature were conducted to reveal the relative contribution of each of these factors and of their synergism on the observed phenomena. The information provided by the factor separation study can be useful in future climate projections, when a warmer Mediterranean Sea is expected.</p><p>The forecasting feasibility of foehn and the sudden changes in the Dead Sea valley 24 hours in advance using WRF is suggested following the present study. These forecasts can be most valuable for the region affected by pollution penetration from the metropolitan coastal zone.</p>


Weather ◽  
2003 ◽  
Vol 58 (6) ◽  
pp. 219-226 ◽  
Author(s):  
F. Damato ◽  
O. Planchon ◽  
V. Dubreuil

Author(s):  
Mega Fitria Istiqomah ◽  
Sutrisno Sutrisno ◽  
Adi Wijaya

 Abstrak. Kabupaten Jembrana mempunyai posisi yang strategis secara geografis, sebagai pintu gerbang Bali bagian barat yang merupakan kunci pertukaran dan percampuran budaya serta penduduk. Daerah ini berbatasan langsung dengan Selat Bali sehingga mendapat pengaruh angin laut yang membangkitkan gelombang dan pasang surut. Tujuan dari penelitian ini adalah untuk menganalisis perubahan garis pantai menggunakan teknologi penginderaan jauh pesisir Kabupaten Jembrana tahun 2013 hingga 2016. Metode yang digunakan dalam penelitian ini adalah metode penginderaan jauh menggunakan citra satelit Landsat 8 dan metode survei lapangan untuk mengetahui kondisi yang sebenarnya. Hasil penelitian ini menunjukkan bahwa perubahan garis pantai tahun 2013 sampai 2014 mengalami abrasi sebesar 801.717 m2 dan akresi sebesar 1348.564 m2, tahun 2014 sampai 2015 mengalami abrasi sebesar 4921.561 m2 dan akresi sebesar 388.969 m2, terakhir di tahun 2015 sampai 2016 perubahan akibat abrasi terjadi sebesar 384.637 m2 dan akresi sebesar 4431.331 m2.Abstract.Jembrana district has a strategic position geographically, as the gateway to west Bali which is the key exchange and the mixing of culture as well as residents. This area is directly adjacent to the Strait of Bali so it gets the sea breeze effect that evokes the waves and tides. The purpose of this study was to analyze the changes in the shoreline using remote sensing technology at Jembrana coast in 2013 to 2016. The method used in this research is the method of remote sensing using Landsat 8 satellite imagery and field survey methods to determine the actual condition. These results indicate that changes in the coastline of 2013 to 2014 experience abrasion of 801 717 m2 and accretion amounted to 1348,564 m2,2014 to 2015 experience abrasion of 4921,561 m2 and accretion amounted to 388 969 m2, the last in 2015 until 2016 the changes due abrasion occurs at 384 637 m2 and accretion amounted to 4431,331 m2.  


2006 ◽  
Vol 13 (03) ◽  
pp. 225 ◽  
Author(s):  
O. Planchon ◽  
F. Damato ◽  
V. Dubreuil ◽  
P. Gouery

Author(s):  
Karl F. Warnick ◽  
Rob Maaskant ◽  
Marianna V. Ivashina ◽  
David B. Davidson ◽  
Brian D. Jeffs

Sign in / Sign up

Export Citation Format

Share Document