Investigation of sea breeze and foehn in the Dead Sea valley with remote sensing observations and WRF model simulations

Author(s):  
Dorita Rostkier-Edelstein ◽  
Pavel Kunin ◽  
Pinhas Alpert

<p>The atmospheric dynamics in the Dead Sea Valley has been studied for decades. However, the studies relied mostly on surface observations and simple coarse-model simulations, insufficient to elucidate the complex flow in the area. In this seminar I will present a first study using high resolution (temporal and spatial) and sophisticate both, measurements and modeling tools. We focused on afternoon hours during summer time, when the Mediterranean Sea breeze penetrates into the Dead Sea Valley and sudden changes of wind, temperature and humidity occur in the valley.</p><p>An intense observations period in the area, including ground-based remote sensing and in-situ observations, took place during August and November 2014. The measurements were conducted as part of the Virtual Institute DEad SEa Research Venue (DESERVE) project using the KITcube profiling instruments (wind lidars, radiometer and soundings) along with surface Energy Balance Station. These observations enabled analysis of the vertical profile of the atmosphere at one single location at the foothills of Masada, about 1 km west of the Dead Sea shore.</p><p>High resolution (1.1 km grid size) model simulations were conducted using the Advanced Research Weather version of the Weather Forecast and Research mesoscale model (WRF). The simulations enabled analysis of the 3D flow at the Dead Sea Valley, information not provided by the observations at a single location. Sensitivity tests were run to determine the best model configuration for this study.</p><p>Our study shows that foehn develops in the lee side of the Judean Mountains and Dead Sea Valley in the afternoon hours when the Mediterranean Sea breeze reaches the area. The characteristics of the Mediterranean Sea breeze penetration into the valley and of the foehn (e.g. their depth) and the impact they have on the boundary layer flow in the Dead Sea Valley (e.g. sudden changes in temperature, humidity and wind) are conditioned to the daily synoptic and mesosocale conditions. In the synoptic scale, the depth of the seasonal pressure trough at sea level and the height of inversion layers play a significant role in determining the breeze and foehn characteristics. In the mesoscale, the intensity of the Dead Sea breeze and the humidity brought by it determines the outcomes at the time of Mediterranean Sea breeze penetration and foehn development. Dynamically, the foehn is associated with a hydraulic jump.</p><p>Hypothetical model simulations with modified terrain and with warmer Mediterranean Sea surface temperature were conducted to reveal the relative contribution of each of these factors and of their synergism on the observed phenomena. The information provided by the factor separation study can be useful in future climate projections, when a warmer Mediterranean Sea is expected.</p><p>The forecasting feasibility of foehn and the sudden changes in the Dead Sea valley 24 hours in advance using WRF is suggested following the present study. These forecasts can be most valuable for the region affected by pollution penetration from the metropolitan coastal zone.</p>

2021 ◽  
Author(s):  
Dorita Rostkier-Edelstein ◽  
Pavel Kunin ◽  
Pinhas Alpert

<p>The atmospheric dynamics in the Dead Sea (DS) Valley has been studied for decades. However, the studies relied mostly on surface observations and simple coarse-model simulations, insufficient to elucidate the complex flow in the area.  I will present a first study using high resolution (temporal and spatial) and sophisticate both, measurements and modeling tools. We focused on afternoon hours during summer time, when the Mediterranean Sea (MS) breeze penetrates into the DS Valley and sudden changes of wind, temperature and humidity occur in the valley.</p><p>An intense observations period , including ground-based remote sensing and in-situ observations, took place during August and November 2014. The measurements were conducted as part of the Virtual Institute DEad SEa Research Venue (DESERVE) project using the KITcube profiling instruments (wind lidars, radiometer and soundings) along with surface Energy Balance Station. These observations enabled analysis of the vertical profile of the atmosphere at one single location at the foothills of Masada, about 1 km west of the DS shore.</p><p>High resolution (1.1 km grid size) model simulations were conducted using the WRF model. The simulations enabled analysis of the 3D flow at the DS Valley, information not provided by the observations at a single location. Sensitivity tests were run to determine the best model configuration for this study.</p><p>Our study shows that foehn develops in the lee side of the Judean Mountains and DS Valley in the afternoon hours when the MS breeze reaches the area. The characteristics of the MS breeze penetration into the valley and of the foehn (e.g. their depth) and the impact they have on the boundary layer flow in the DS Valley (e.g. the changes in temperature, humidity and wind) are conditioned to the daily synoptic and mesosocale conditions. In the synoptic scale, the depth of the seasonal trough at sea level and the height of inversion layers play a significant role in determining the breeze and foehn characteristics. In the mesoscale, the intensity of the DS breeze and the humidity brought by it determines the outcomes at the time of MS breeze penetration and foehn development. Dynamically, the foehn is associated with a hydraulic jump.</p><p>Hypothetical model simulations with modified terrain and with warmer MS surface temperature were conducted to reveal the relative contribution of each of these factors and of their synergism on the observed phenomena. The information provided by the factor separation study can be useful in future climate projections, when a warmer MS is expected.</p><p>The forecasting feasibility of foehn and the sudden changes in the DS valley 24 hours in advance using WRF is suggested following the present study. These forecasts can be most valuable for the region affected by pollution penetration from the metropolitan coastal zone.</p>


2016 ◽  
Vol 5 (2) ◽  
pp. 244
Author(s):  
Uri Kafri

<p class="emsd-body"><span lang="EN-GB">A deep core hole, drilled in the middle of the Dead Sea penetrated the Pleistocene- Holocene section, revealed an alternating sequence of fresh water and evaporitic (gypsum, halite) deposits. The vertical facies variations were interpreted as related mainly to lake level changes during this period. The present study, however, proposes an additional factor that influenced these changes, namely subsurface seawater intrusion from the Mediterranean Sea to the endorheic Dead Sea Basin. This proposed process is controlled by the elevation and head difference between both base levels at a given time, because the Mediterranean Sea level also fluctuated during the discussed period. We find that in times of smaller head differences, and assumed lower seawater intrusion, a gypsum facies prevailed in the Dead Sea Basin. In times of greater head differences and assumed more abundant seawater intrusion a halite facies prevailed because of greater sodium chloride input into the Dead Sea.</span></p>


2019 ◽  
Vol 229 ◽  
pp. 240-254 ◽  
Author(s):  
Pavel Kunin ◽  
Pinhas Alpert ◽  
Dorita Rostkier-Edelstein
Keyword(s):  
Dead Sea ◽  

2021 ◽  
Vol 561 ◽  
pp. 110057
Author(s):  
Hana Uvanović ◽  
Bernd R. Schöne ◽  
Krešimir Markulin ◽  
Ivica Janeković ◽  
Melita Peharda

2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

&lt;p&gt;Initially described in the late 50&amp;#8217;s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.&lt;/p&gt;&lt;p&gt;We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.&lt;/p&gt;&lt;p&gt;Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.&lt;/p&gt;&lt;p&gt;Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Musab Mbideen ◽  
Balázs Székely

&lt;p&gt;Remote Sensing (RS) and Geographic Information System (GIS) instruments have spread rapidly in recent years to manage natural resources and monitor environmental changes. Remote sensing has a vast range of applications; one of them is lakes monitoring. The Dead Sea (DS) is subjected to very strong evaporation processes, leading to a remarkable shrinkage of its water level. The DS is being dried out due to a negative balance in its hydrological cycle during the last five decades. This research aims to study the spatial changes in the DS throughout the previous 48 years. Change detection technique has been performed to detect this change over the research period (1972-2020). 73 Landsat imageries have been used from four digital sensors; Landsat&amp;#160;1-5 MSS C1 Level-1, Landsat&amp;#160;4-5 TM C1 Level-1, Land&amp;#160;sat&amp;#160;7&amp;#160;ETM+ C1 &amp;#160;Level-1, and Landsat&amp;#160;8 OLI-TIRS C1 Level. After following certain selection criteria , the number of studied images decreased. Furthermore, the Digital Surface Model of the Space Shuttle Radar Topography Mission and a bathymetric map of the Dead Sea were used. The collected satellite imageries were pre-processed and normalized using ENVI 5.3 software by converting the Digital Number (DN) to spectral radiance, the spectral radiance was converted to apparent reflectance, atmospheric effects were removed, and finally, the black gaps were removed. It was important to distinguish between the DS lake and the surrounding area in order to have accurate results, this was done by performing classification techniques. The digital terrain model of the DS was used in ArcGIS (3D) to reconstruct the elevation of the shore lines. This model generated equations to detect the water level, surface area, and water volume of the DS. The results were compared to the bathymetric data as well. The research shows that the DS water level declined 65&amp;#160;m (1.35&amp;#160;m/a) in the studied period. The surface area and the water volume declined by 363.56&amp;#160;km&lt;sup&gt;2 &lt;/sup&gt;(7.57&amp;#160;km&lt;sup&gt;2&lt;/sup&gt;/a) and 53.56&amp;#160;km&lt;sup&gt;3&lt;/sup&gt; (1.11&amp;#160;km&lt;sup&gt;3&lt;/sup&gt;/a), respectively. The research also concluded that due to the bathymetry of the DS, the direction of this shrinkage is from the south to the north. We hypothesize that anthropogenic effects have contributed in the shrinkage of the DS more than the climate. The use of the DS water by both Israel and Jordan for industrial purposes is the main factor impacting the DS, another factor is the diversion of the Jordan and Yarmouk rivers. Our results also allow to give a prediction for the near future of the DS: the water level is expected to reach &amp;#8211;445&amp;#160;m in 2050, while the surface area and the water volume is expected to be 455&amp;#160;km&lt;sup&gt;2&lt;/sup&gt; and 142&amp;#160;km&lt;sup&gt;3&lt;/sup&gt;, respectively.&amp;#160;&lt;/p&gt;


2017 ◽  
Vol 165 ◽  
pp. 359-369 ◽  
Author(s):  
Lee Sever ◽  
Pinhas Alpert ◽  
Alexei Lyapustin ◽  
Yujie Wang ◽  
Alexandra Chudnovsky

Sign in / Sign up

Export Citation Format

Share Document