Signal subspace reconstruction method of MIMO radar

2010 ◽  
Vol 46 (7) ◽  
pp. 531 ◽  
Author(s):  
J. Zhang ◽  
L.R. Zhang ◽  
Z.W. Yang ◽  
N. Liu
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongqiang Yang ◽  
Ningjun Ruan ◽  
Guanjun Huang ◽  
Junpeng Shi ◽  
Fangqing Wen

In this paper, a novel two-dimensional (2D) direction-of-departure (DOD) and 2D direction-of-arrival (DOA) estimate algorithm is proposed for bistatic multiple-input multiple-output (MIMO) radar system equipped with coprime electromagnetic vector sensors (EMVS) arrays. Firstly, we construct the propagator to obtain the signal subspace. Then, the ambiguous angles are estimated by using rotation invariant technique. Based on the characteristic of coprime array, the unambiguous angles estimation is achieved. Finally, all azimuth angles estimation is followed via vector cross product. Compared to the existing uniform linear array, coprime MIMO radar is occupying large array aperture, and the proposed algorithm does not need to obtain signal subspace by eigendecomposition. In contrast to the state-of-the-art algorithms, the proposed algorithm shows better estimation performance and simpler computation performance. The proposed algorithm’s effectiveness is proved by simulation results.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 341 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Chunhua Yu

The unknown mutual coupling effect between antennas significantly degrades the target localization performance in the bistatic multiple-input multiple-output (MIMO) radar. In this paper, the joint estimation problem for the direction of departure (DOD) and direction of arrival (DOA) is addressed. By exploiting the target sparsity in the spatial domain and formulating a dictionary matrix with discretizing the DOD/DOA into grids, compressed sensing (CS)-based system model is given. However, in the practical MIMO radar systems, the target cannot be precisely on the grids, and the unknown mutual coupling effect degrades the estimation performance. Therefore, a novel CS-based DOD/DOA estimation model with both the off-grid and mutual coupling effect is proposed, and a novel sparse reconstruction method is proposed to estimate DOD/DOA with updating both the off-grid and mutual coupling parameters iteratively. Moreover, to describe the estimation performance, the corresponding Cramér–Rao lower bounds (CRLBs) with all the unknown parameters are theoretically derived. Simulation results show that the proposed method can improve the DOD/DOA estimation in the scenario with unknown mutual coupling effect, and outperform state-of-the-art methods.


2020 ◽  
Vol 56 (2) ◽  
pp. 99-102
Author(s):  
Tingxiao Zhang ◽  
Jinli Chen ◽  
Xuan Chen

Author(s):  
Neng-Yu Zhang ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
Tom Obrig ◽  
Joachim Frank

We have reconstructed the 40S ribosomal subunit at a resolution of 4 nm using the single-exposure pseudo-conical reconstruction method of Radermacher et al.Small (40S) ribosomal subunits were Isolated from rabbit reticulocytes, applied to grids and negatively stained (0.5% uranyl acetate) in a manner that “sandwiches” the specimen between two layers of carbon. Regions of the grid exhibiting uniform and thick staining were identified and photographed twice (magnification 49,000X). The first micrograph was always taken with the specimen tilted by 50° and the second was of the Identical area untilted (Fig. 1). For each of the micrographs the specimen was subjected to an electron dose of 2000-3000 el/nm2.Three hundred thirty particles appearing in the L view (defined in [4]) were selected from both tilted- and untilted-specimen micrographs. The untilted particles were aligned and their rotational alignment produced the azimuthal angles of the tilted particles in the conical tilt series.


2009 ◽  
Vol 129 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Shoichi Urano ◽  
Takeshi Yamada ◽  
Yoshifumi Ooura ◽  
Youheng Xu ◽  
Yasutaka Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document