Vivaldi antenna with reduced RCS using half‐mode substrate integrated waveguide

2014 ◽  
Vol 50 (5) ◽  
pp. 345-346 ◽  
Author(s):  
Yongtao Jia ◽  
Ying Liu ◽  
Yuwen Hao ◽  
Shuxi Gong
2017 ◽  
Vol 74 ◽  
pp. 101-109 ◽  
Author(s):  
Jingjing Xue ◽  
Wen Jiang ◽  
Shu-Xi Gong ◽  
Shenghui Zhang

2018 ◽  
Vol 8 (12) ◽  
pp. 2625 ◽  
Author(s):  
Sara Salem Hesari ◽  
Jens Bornemann

This paper describes a novel feed system for compact antipodal Vivaldi antenna arrays on a single layer of substrate integrated waveguide (SIW) by using SIW H-plane right-angled power dividers. The proposed antenna systems are composed of a Vivaldi array and an H-plane right-angled corner power divider which includes an over-moded waveguide section. Based on the number of antennas in the Vivaldi array, mode converter sections at K-band and Ka-band frequencies are designed, fabricated, and measured when feeding Vivaldi antenna arrays with two, three, and four antennas. Right-angled SIW power dividers are employed to obtain controllable phase distribution over the output ports which consequently controls the beam shapes of the systems. The phase relationships in the output ports are varied to obtain different pattern directions for different applications. The two-way divider system with 180-degree phase difference and three-way divider system are fabricated and measured; simulation results are presented for other designs. The measured results are in good agreement with simulations which confirms the design approach. All systems achieve good performance and meet all design goals including a return loss better than 10 dB in the operating bandwidth, gain higher than 8 dB for all systems, and radiation and polarization efficiencies higher than 80% and 98%, respectively.


2018 ◽  
Vol 50 (001) ◽  
pp. 07-12 ◽  
Author(s):  
S. S. MEMON ◽  
A. A. JAMALI ◽  
M. R. ANJUM ◽  
M. M. MEMON ◽  
S. F. QADRI

Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


Sign in / Sign up

Export Citation Format

Share Document