New approach to discrete phase-locked loop based on digital measurement of time intervals

1979 ◽  
Vol 15 (15) ◽  
pp. 445
Author(s):  
Djurdje Perisic
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
D. Menaga ◽  
S. Rajakumar ◽  
P. M. Ayyasamy

Abstract A new approach was carried out with the spent mushroom substrate (SMS) of Pleurotus florida on ferrous iron (Fe2+) removal using live, dead and pretreated substrate. In this study, the various dosage levels of SMS namely, 0.25, 0.50, 1.0 and 1.50 g/50 mL were used for the removal of Fe2+ at different time intervals for 90 min. The effect of various temperatures and pH on Fe2+ removal was studied with optimized dosages and time intervals. The biosorption potential of P. florida SMS was checked against the iron-contaminated groundwater collected from in and around Salem, Namakkal and Dharmapuri districts of Tamil Nadu. The biosorption data were obtained and analyzed in terms of their kinetic behavior. Among the SMS of P. florida, the live SMS showed potential Fe2+ removal (100%) from aqueous metal solution in all the tested concentrations. SMS of P. florida showed high potential removal of Fe2+ in neutral pH, at room temperature and explored an efficient sorption ability (100%) in the tested water sample (SW10). The adsorption kinetic values fitted very well with pseudo-second-order when comparing with pseudo-first-order reaction. FTIR, SEM and EDX analysis proved the accumulation of Fe2+ by the SMS. The present study confirmed that the live SMS of P. florida may serve as a potential and eco-friendly biosorbent for removal of Fe2+ from the iron-contaminated water. Graphic abstract


2005 ◽  
Vol 2005 (1) ◽  
pp. 161-165
Author(s):  
Carl Jochums ◽  
Glen Watabyashi ◽  
Heather Parker-Hall

ABSTRACT California has initiated a new approach to create an objective standard and regulate best achievable protection (BAP) for sensitive shoreline protection from vessel spills. The Oil Pollution Act (OPA 90) and California's Lempert-Keene-Seastrand Oil Spill Prevention and Response Act (SB 2040) mandate BAP as the standard for preparedness and response. BAP poses the critical response planning questions: “How much response resources should industry provide?” and “In what timeframes should those resources be deployed?” Prior California regulations intended to achieve BAP by relying on vessels to identify hazards, trajectories, environmental consequences, and response resource plans, produced less than optimal results in many instances. Though effective in theory, this approach resulted in fuzzy consequences and vague arrangements for adequate response. Because it was neither clear what sites would be protected (and what response resources would be required) nor at what time, and because it was consequentially not clear what response resources would be engaged to execute protection, drilling C-plans became obtuse. This in turn fostered “paper tiger” OSROs and resulted in an uneven playing field for business competitors. In Californias new approach, OSPR used many of the original concepts to identify BAP by using the NOAA GNOME oil spill model for generic vessel risk threats for California ports and along the California coast. This paper explains the theory, steps, and details. As a result of this process, BAP has been defined in terms of specific site deployments at specific time intervals and presented in tables in regulation. This new approach provides a number of benefits and solutions to the difficult issues in the former approach, including a standard for BAP.


2000 ◽  
Vol 178 ◽  
pp. 373-379
Author(s):  
Yu. V. Barkin

AbstractTo explain the observed effects in the Earth’s polar motion, a mechanism of the relative motion of the lower mantle and upper mantle with a boundary at 670 km of depth is proposed. According to the new approach, the Earth’s layers (including separate plates) are considered as nonspherical, heterogeneous celestial bodies, interacting with each other, with the Moon and the Sun and executing a wide spectrum of relative motions in different timescales. The small displacements of the centers of masses of the lower and upper mantles and their relative rotations have here a primary importance. These displacements display themselves at various time scales (from a few months to millions of years), and their manifestations are readily detected in the regularities of the distribution of geological structures as well as in many geodynamical processes. Important regularities of the ordered positions of the plate centers, of their triple junctions, hot spots, systems of fractures and cracks, geographic structures, fields of fossils, etc., are observed as consequences of certain displacements and inclined rotations (Barkin, 1999). At geological time intervals, the slow motion of the layers causes mutually correlated variations of the processes of rifting, spreading, subduction, regressions and transgressions of the sea, of the plate motion, formation and breakdown of super continents, etc. The motions and the accompanying tectonic mass redistribution cause variations of the components of the Earth’s inertia tensor and geopotential, which lead to variations of its diurnal rotation and polar motion. Explanation of the main properties of the perturbed Chandler polar motion has been done.


2016 ◽  
Vol 23 (5) ◽  
pp. 600-604 ◽  
Author(s):  
Choon Ki Ahn ◽  
Peng Shi ◽  
Sung Hyun You

Leonardo ◽  
2004 ◽  
Vol 37 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Mark Ballora ◽  
Bruce Pennycook ◽  
Plamen C. Ivanov ◽  
Leon Glass ◽  
Ary L. Goldberger

Ever since 1819, when Theophile Laënnec first put a block of wood to a patient's chest in order to listen to her heartbeat, physicians have used auscultation to help diagnose cardiopulmonary disorders. Here the authors describe a novel diagnostic method based in music technology. Digital music-synthesis software is used to transform the sequence of time intervals between consecutive heartbeats into an electroacoustic soundtrack. The results show promise as a diagnostic tool and also provide the basis of an interesting musical soundscape.


2019 ◽  
Vol 222 ◽  
pp. 01009
Author(s):  
Vadim Egorov ◽  
Igor Volobuev

We consider a new approach to the description in the framework of QFT of processes passing at finite space and time intervals. The formalism is based on the Feynman diagram technique in the coordinate representation, in which the rules of passing to the momentum representation are modified in accordance with the experimental setup of neutrino oscillation experiments. In effect, only the propagators of particles in the momentum representation are modified, while all the other standard Feynman rules in the momentum representation remain the same. Since the initial and final particle states are described by plane waves, the approach does not need the use of wave packets, which greatly simplifies the calculations of amplitudes. Taking as examples the processes of displaced pion decay, neutral kaon and neutrino oscillations we show that the approach under consideration correctly reproduces the known standard results.


2021 ◽  
pp. 108145
Author(s):  
Yi Bu ◽  
Xianxiang Yu ◽  
Jing Yang ◽  
Tao Fan ◽  
Guolong Cui

2003 ◽  
Author(s):  
J. Grudniewicz ◽  
J. Kudrewicz ◽  
T. Barczyk

Sign in / Sign up

Export Citation Format

Share Document