Infra-red light modulator of ridge-type optical waveguide structure using effect of free-carrier absorption

1986 ◽  
Vol 22 (17) ◽  
pp. 922 ◽  
Author(s):  
S. Kaneda ◽  
Y. Fujisawa ◽  
K. Kikuiri
2007 ◽  
Vol 131-133 ◽  
pp. 149-154
Author(s):  
Eugenijus Gaubas ◽  
Jan Vanhellemont

Results are presented of a comparative study of carrier lifetime in silicon and germanium. The impact of surface quality and passivation, of dopant type and concentration and of metallic impurities is studied using microwave probed free carrier absorption transient techniques.


1996 ◽  
Vol 74 (S1) ◽  
pp. 29-31 ◽  
Author(s):  
C. Fernando ◽  
S. Janz ◽  
R. Normandin ◽  
J. P. Noël ◽  
N. G. Tarr ◽  
...  

A Si1−xGex pin optical waveguide modulator operating at a wavelength of λ = 1.3 μm was designed and demonstrated. The free carrier absorption by carriers injected into the i region under high forward bias was used to attenuate the guided mode intensity. Numerical simulations indicate that this structure can operate at speeds up to 200 MHz. A maximum modulation depth of 85% was measured for a 2 mm long waveguide using a peak modulation current of 4200 A cm−2.


2021 ◽  
Vol 27 (3) ◽  
pp. 1-11
Author(s):  
Yen-Wei Hsueh ◽  
Chih-Hsien Cheng ◽  
Cai-Syuan Fu ◽  
Huai-Yung Wang ◽  
Bo-Ji Huang ◽  
...  

The infra-red absorption spectrum of silicon doped with high densities of boron and phosphorus has been measured from 1 to 60 μm and at temperatures between 5 and 290 °K in order to observe the local and band mode vibrational absorption activated by these impurities. The major experimental problem, that of achieving a high degree of electrical compensation to eliminate free carrier absorption, was solved by using fast electron bombardment to introduce a controllable number of trapping centres. A series of experiments was conducted to eliminate the effects of these centres from the spectrum of the chemical impurities. The characteristic spectra of the substitutional boron and phosphorus have been analysed in detail in terms of the theory of Dawber & Elliott. For local modes activated by boron isotopes close agreement with theory has been found in number of lines, strength and frequency. From the latter it is estimated that the local force constants are weakened by less than 10 % on substituting boron for silicon in the lattice. Second harmonic lines are observed at a frequency 0.25 % less than twice that of the fundamentals. The band modes exhibit a striking in-band resonance at 0.0546 eV which was not theoretically predicted. This is attributed to phosphorus and analysis shows that the theory can give such a resonance but not with parameters associated with substitutional phosphorus and unchanged force constants. Most of the remaining features in the band modes can be interpreted satisfactorily in terms of substitutional boron but this requires some modification to published data on the density of states for pure silicon. Critical points for TO( L ), TO( X ) and LA( L ) phonons are clearly identified in the spectra.


2004 ◽  
Vol 84 (13) ◽  
pp. 2265-2267 ◽  
Author(s):  
Joerg Isenberg ◽  
Wilhelm Warta

Sign in / Sign up

Export Citation Format

Share Document