Interconnection systems: the design, development and manufacture of prototype, medium volume and high volume fine line printed circuit boards

1996 ◽  
Author(s):  
M. Morris
2014 ◽  
Vol 2014 (1) ◽  
pp. 000444-000447 ◽  
Author(s):  
Yoshio Nishimura ◽  
Hirohisa Narahashi ◽  
Shigeo Nakamura ◽  
Tadahiko Yokota

Printed circuit boards manufactured by a semi-additive process are widely used for packaging substrates. Along with increasing demands of downsizing electronic devices with high functionality, packaging substrates installed with semiconductors in such devices are strongly required to be miniaturized with high density of circuit wirings. We report our insulation build-up materials and processes for advanced packages with fine line/space and high reliability. The insulation materials we developed show low coefficient of thermal expansion (CTE), low dielectric loss tangent and good thinner insulation reliability. They can produce fine line and space (FLS) under 10μm pitch by a semi-additive process.


1984 ◽  
Vol 11 (2) ◽  
pp. 109-115
Author(s):  
J. A. Scarlett

The techniques for the generation of fine lines on rigid and flexible printed circuit boards are reviewed, and it is shown how the tracking on the interconnect can be made to match the requirements of chip carriers, TAB chips or beam leaded or wire bonded chips directly mounted.The use of fine line techniques on planar substrates can be adapted to provide a low cost, high density interconnect which offers a truly three dimensional connection capability without the use of a “back wiring panel”. Such a three dimensional interconnect can offer opportunities for improvement in the removal of heat from high dissipation chips, thus offering significantly increased reliability.


2020 ◽  
Vol 33 (2) ◽  
pp. 14-21
Author(s):  
Carmichael Gugliotti ◽  
Rich Bellemare ◽  
Andy Oh ◽  
Ron Blake

ABSTRACT Pulse plating of copper has typically found use in the plating of very difficult, high aspect ratio printed circuit boards. Its ability to provide throwing power deep within through holes with aspect ratios as high as 30:1 is well established. This technology has long been thought of as a high technology, high cost, specialty process applicable only to high end products. This paper will discuss the advantages that pulse plating offers over conventional DC copper plating in high volume production applications for panels with aspect ratios of up to 12:1. These advantages are reduced plating time, increased throughput, and reduced plated copper thickness on the panel surface while meeting minimum in-hole copper thickness requirements.  


2008 ◽  
Vol 128 (11) ◽  
pp. 657-662 ◽  
Author(s):  
Tsuyoshi Maeno ◽  
Yukihiko Sakurai ◽  
Takanori Unou ◽  
Kouji Ichikawa ◽  
Osamu Fujiwara

Sign in / Sign up

Export Citation Format

Share Document