Fixed frequency integral sliding‐mode current‐controlled MPPT boost converter for two‐stage PV generation system

2019 ◽  
Vol 13 (6) ◽  
pp. 793-805 ◽  
Author(s):  
Ravichandran Chinnappan ◽  
Premalatha Logamani ◽  
Rengaraj Ramasubbu
Actuators ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Asma Charaabi ◽  
Oscar Barambones ◽  
Abdelaziz Zaidi ◽  
Nadia Zanzouri

In this article, an efficient and fast two-stage approach for controlling DC-DC boost converter using non linear sliding mode controller for a PV power plant is proposed. The control approach is based on two online methods instead of using the conventional combination of online and offline methods to harvest maximum energy and deliver an output PV voltage with reduced ripples. The proposed two-stage maximum power point tracking (MPPT) control can be integrated into many applications such as hybrid electric vehicles. Simulation results compared with the standard approaches P&O prove the tracking efficiency of the proposed method under fast changing atmospheric conditions of an average 99.87% and a reduced average ripple of 0.06. The two-stage MPPT control was implemented involving the embedded dSPACE DSP in comparison to the classical P&O to prove the efficiency and the validity of the control scheme. The experimental set-up system was carried out on boost converter and programmable DC electronic resistive load to highlights the robustness of the proposed controller against atmospheric changes and parametric variation.


Author(s):  
Abbas Kihal ◽  
Fateh Krim ◽  
Billel Talbi ◽  
Abdelbaset Laib ◽  
Abdeslem Sahli

This contribution considers an improved control scheme for three-phase two-stage grid-tied photovoltaic (PV) power system based on integral sliding mode control (ISMC) theory. The proposed control scheme consists of maximum power point tracking (MPPT), DC-Link voltage regulation and grid currents synchronization. A modified voltage-oriented maximum power point tracking (VO-MPPT) method based on ISMC theory is proposed for design of an enhanced MPPT under irradiation changes. Moreover, a novel DC-Link voltage control based on ISMC theory is proposed in order to achieve good regulation of DC-Link voltage over its reference. To inject the generated PV power into the grid with high quality, a voltage oriented control based on space vector modulation (SVM) and ISMC (VOC-ISMC-SVM) has been developed to control the grid currents synchronization. Numerical simulations are performed in Matlab/SimulinkTM environment in order to evaluate the proposed control strategy. In comparison with conventional control scheme, the developed control strategy provides an accurate MPP tracking with less power oscillation as well as a fast and an accurate DC-Link regulation under climatic conditions variations. Moreover, the transfer of the extracted power into the grid is achieved with high quality.


Sign in / Sign up

Export Citation Format

Share Document