Non-volatile run-time field-programmable gate arrays structures using thermally assisted switching magnetic random access memories

2010 ◽  
Vol 4 (3) ◽  
pp. 211-226 ◽  
Author(s):  
Y. Guillemenet ◽  
G. Sassatelli ◽  
L. Torres
Author(s):  
Ahmed I. Saleh

Partially reconfigurable field programmable gate arrays (FPGAs) can accommodate several independent tasks simultaneously. FPGA, as all reconfigurable chips, relies on the “host-then-compact-when-needed” strategy. Accordingly, it should have the ability to both place incoming tasks at run time and compact the chip whenever needed. Compaction is a proposed solution to alleviate external fragmentations problem, trying to move running tasks closer to each other in order to free a sufficient area for new tasks. However, compaction conditions the suspension of the running tasks, which introduces a high penalty. In order to increase the chip area utilization as well as not affecting the response times of tasks, efficient compaction techniques become increasingly important. Unfortunately, traditional compaction techniques suffer from a variety of faults. This paper introduces a novel Puzzle Based Compaction (PBC) technique that is a shape aware technique, which takes the tasks shapes into consideration. In this regard, it succeeded not only to eliminate the internal fragmentations but also to minimize the external fragmentations. This paper develops a novel formula, which is the first not to estimate, but to exactly calculate the amount of external fragmentations generated by accommodating a set of tasks inside the reconfigurable chip.


2010 ◽  
Vol 1 (4) ◽  
pp. 34-70
Author(s):  
Ahmed I. Saleh

Partially reconfigurable field programmable gate arrays (FPGAs) can accommodate several independent tasks simultaneously. FPGA, as all reconfigurable chips, relies on the “host-then-compact-when-needed” strategy. Accordingly, it should have the ability to both place incoming tasks at run time and compact the chip whenever needed. Compaction is a proposed solution to alleviate external fragmentations problem, trying to move running tasks closer to each other in order to free a sufficient area for new tasks. However, compaction conditions the suspension of the running tasks, which introduces a high penalty. In order to increase the chip area utilization as well as not affecting the response times of tasks, efficient compaction techniques become increasingly important. Unfortunately, traditional compaction techniques suffer from a variety of faults. This paper introduces a novel Puzzle Based Compaction (PBC) technique that is a shape aware technique, which takes the tasks shapes into consideration. In this regard, it succeeded not only to eliminate the internal fragmentations but also to minimize the external fragmentations. This paper develops a novel formula, which is the first not to estimate, but to exactly calculate the amount of external fragmentations generated by accommodating a set of tasks inside the reconfigurable chip.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2108
Author(s):  
Mohamed Yassine Allani ◽  
Jamel Riahi ◽  
Silvano Vergura ◽  
Abdelkader Mami

The development and optimization of a hybrid system composed of photovoltaic panels, wind turbines, converters, and batteries connected to the grid, is first presented. To generate the maximum power, two maximum power point tracker controllers based on fuzzy logic are required and a battery controller is used for the regulation of the DC voltage. When the power source varies, a high-voltage supply is incorporated (high gain DC-DC converter controlled by fuzzy logic) to boost the 24 V provided by the DC bus to the inverter voltage of about 400 V and to reduce energy losses to maximize the system performance. The inverter and the LCL filter allow for the integration of this hybrid system with AC loads and the grid. Moreover, a hardware solution for the field programmable gate arrays-based implementation of the controllers is proposed. The combination of these controllers was synthesized using the Integrated Synthesis Environment Design Suite software (Version: 14.7, City: Tunis, Country: Tunisia) and was successfully implemented on Field Programmable Gate Arrays Spartan 3E. The innovative design provides a suitable architecture based on power converters and control strategies that are dedicated to the proposed hybrid system to ensure system reliability. This implementation can provide a high level of flexibility that can facilitate the upgrade of a control system by simply updating or modifying the proposed algorithm running on the field programmable gate arrays board. The simulation results, using Matlab/Simulink (Version: 2016b, City: Tunis, Country: Tunisia, verify the efficiency of the proposed solution when the environmental conditions change. This study focused on the development and optimization of an electrical system control strategy to manage the produced energy and to coordinate the performance of the hybrid energy system. The paper proposes a combined photovoltaic and wind energy system, supported by a battery acting as an energy storage system. In addition, a bi-directional converter charges/discharges the battery, while a high-voltage gain converter connects them to the DC bus. The use of a battery is useful to compensate for the mismatch between the power demanded by the load and the power generated by the hybrid energy systems. The proposed field programmable gate arrays (FPGA)-based controllers ensure a fast time response by making control executable in real time.


Sign in / Sign up

Export Citation Format

Share Document