An approach for coordinated automatic voltage regulator–power system stabiliser design in large-scale interconnected power systems considering wind power penetration

2012 ◽  
Vol 6 (1) ◽  
pp. 39 ◽  
Author(s):  
H. Golpira ◽  
H. Bevrani ◽  
A. Hesami Naghshbandy
2014 ◽  
Vol 672-674 ◽  
pp. 227-232
Author(s):  
Xu Zhi Luo ◽  
Hai Feng Li ◽  
Hua Dong Sun ◽  
An Si Wang ◽  
De Zhi Chen

With the fast development of the wind power, security constraints of power systems have become the bottleneck of the acceptable capacity for wind power. The underdamping oscillation modes of the inter-area is an important aspect of the constraints. In this paper, an equivalent model of a power system with wind plants has been established, and the impact of the integration of the large-scale wind power on the inter-area oscillation modes has been studied based on the frequency-domain and time-domain simulations. The results indicate that the damping of inter-area oscillation mode can be enhanced by the replacement of synchronous generators (SGs) with the wind generators. The enhancing degree is up to the participation value of the SGs replaced. The conclusion has been verified by the actual system example of Xinjiang-Northwest grid. It can provide a reference for system programming and operation.


2016 ◽  
Vol 13 (3) ◽  
pp. 347-360 ◽  
Author(s):  
Amin Safari ◽  
Davoud Sheibai

This paper presents an efficient Artificial Bee Colony (ABC) algorithm for solving large scale economic load dispatch (ELD) problems in power networks. To realize the ELD, the valve-point loading effect, system load demand, power losses, ramp rate limits and prohibited operation zones are considered here. Simulations were performed on four different power systems with 3, 6, 15 and 40 generating units and the results are compared with two forms of power systems, one power system is with a wind power generator and other power system is without a wind power generator. The results of this study reveal that the proposed approach is able to find appreciable ELD solutions than those of previous algorithms.


2018 ◽  
Vol 8 (11) ◽  
pp. 2185 ◽  
Author(s):  
Linfei Yin ◽  
Lulin Zhao ◽  
Tao Yu ◽  
Xiaoshun Zhang

To reduce occurrences of emergency situations in large-scale interconnected power systems with large continuous disturbances, a preventive strategy for the automatic generation control (AGC) of power systems is proposed. To mitigate the curse of dimensionality that arises in conventional reinforcement learning algorithms, deep forest is applied to reinforcement learning. Therefore, deep forest reinforcement learning (DFRL) as a preventive strategy for AGC is proposed in this paper. The DFRL method consists of deep forest and multiple subsidiary reinforcement learning. The deep forest component of the DFRL is applied to predict the next systemic state of a power system, including emergency states and normal states. The multiple subsidiary reinforcement learning component, which includes reinforcement learning for emergency states and reinforcement learning for normal states, is applied to learn the features of the power system. The performance of the DFRL algorithm was compared to that of 10 other conventional AGC algorithms on a two-area load frequency control power system, a three-area power system, and the China Southern Power Grid. The DFRL method achieved the highest control performance. With this new method, both the occurrences of emergency situations and the curse of dimensionality can be simultaneously reduced.


2015 ◽  
Vol 737 ◽  
pp. 199-203
Author(s):  
Shao Hong Tsai ◽  
Yuan Kang Wu ◽  
Ching Yin Lee ◽  
Wen Ta Tsai

Modern wind turbine technology has been a great improvement over the past couple decades, leading to large scale wind power penetration. The increasing penetration of wind power resulted in emphasizing the importance of reliable and secure operation of power systems, especially in a weak power system. In this paper, the main wind turbine control schemes, the wind penetration levels and wind farm dynamic behavior for grid code compliance were investigated in the Penghu wind power system, a weak isolated power system.


2013 ◽  
Vol 391 ◽  
pp. 291-294
Author(s):  
Xiao Ning Xu ◽  
Xue Song Zhou

In recent years, wind power in China developed rappidly. More and more problems occurred with the integration of large-scale wind power. Arounding the issues of power system stability which are resulted from the integration of wind power and ite relevant technology, this paper mainly introduced the voltage stability from the angle of the definition and the classification, and analyzed power systems which contains wind farms from the angle of the research contents and methods of static and dynamic voltage stability, especially emphasizing the necessity of the bifurcation theory used in power system contains wind power.


2013 ◽  
Vol 860-863 ◽  
pp. 2088-2094 ◽  
Author(s):  
Pan Yu Fang ◽  
Xue Feng Fan ◽  
Jie Ren ◽  
Yi Xia ◽  
De Zhi Chen ◽  
...  

Close attention has been paid to the power generation using renewable energy such as the widespread energy and solar energy. After the integration of large-scale renewable energy, more uncertain factors are brought to the power system, which badly influences systems planning and operation. The wind power, photovoltaic power and load are random but correlative, therefore, it is more logical to study the influence exerted by the integration of renewable energy when considering the uncertainty and it is meaningful to the power systems planning and operation. Based on the summary and survey of previous studies, the technical route of power system analysis concerning the correlation of wind power, photovoltaic power and load is proposed in this paper and some key technologies are discussed. The study of correlation offers valuable analysis and recommendations to the connection of large-scale wind and solar power base.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3566 ◽  
Author(s):  
Quanhui Che ◽  
Suhua Lou ◽  
Yaowu Wu ◽  
Xiangcheng Zhang ◽  
Xuebin Wang

With the grid-connected operation of large-scale wind farms, the contradiction between supply and demand of power systems is becoming more and more prominent. The introduction of multiple types of flexible resources provides a new technical means for improving the supply–demand matching relationship of system flexibility and promoting wind power consumption. In this paper, multi-type flexible resources made up of deep peak regulation of thermal units, demand response, and energy storage were utilized to alleviate the peak regulation pressure caused by large-scale wind power integration. Based on current thermal plant deep peak regulation technology, a three-phase peak regulation cost model of thermal power generation considering the low load fatigue life loss and oil injection cost of the unit was proposed. Additionally, from the perspective of supply–demand balance of power system flexibility, the flexibility margin index of a power system containing source-load-storage flexible resources was put forward to assess the contribution from each flexibility provider to system flexibility. Moreover, an optimal dispatching model of a multi-energy power system with large-scale wind power and multi-flexible resources was constructed, aimed at the lowest total dispatching cost of the whole scheduling period. Finally, the model proposed in this paper was validated by a modified RTS96 system, and the effects of different flexibility resources and wind power capacity on the optimal scheduling results were discussed.


2015 ◽  
Vol 734 ◽  
pp. 744-747
Author(s):  
Zhen Bin Li ◽  
Xiao Lei Zhai

This paper takes Unit Commitment with Wind Power Electric Systems for instance and studies the application of relevant indicators in the short run adequacy decisions. It first conducted running adequacy assessment of the RBTS system, and then given unit combination solutions in the ample index constraints. The results show that the relevant indicators can be more accurately to depict the influence of random factors on system operation adequacy, and Unit Commitment decisions based adequacy index is able to give a unit commitment program at different adequacy levels. The research results provide a set of assessment indicators and assessment methods for short running adequacy problems of random fluctuations power accessing to large-scale power systems..


2014 ◽  
Vol 792 ◽  
pp. 305-310 ◽  
Author(s):  
Emmanuel Karapidakis ◽  
Pavlos Georgilakis ◽  
Antonis G. Tsikalakis ◽  
Yiannis A. Katsigiannis ◽  
Marios Moschakis

Large scale integrating of wind power generation into a grid may raise serious stability issues. In this case energy storage systems seem to be suitable for balancing power and energy between the inconstant wind parks generation and the grid. In this paper, the impact of high wind power penetration on the dynamic performance and stability of power systems is investigated. More precisely, the focus of this study is to assess the operation of pump storage systems in the autonomous power system of a large island such as Crete. Results of this study show that it is possible to achieve a large wind power penetration without significant dynamic security problems, if wind energy pump storage units are in operation.


Sign in / Sign up

Export Citation Format

Share Document