scholarly journals Advanced power system partitioning method for fast and reliable restoration: toward a self-healing power grid

2018 ◽  
Vol 12 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Amir Golshani ◽  
Wei Sun ◽  
Kai Sun
Author(s):  
K. Moslehi ◽  
A.B.R. Kumar ◽  
D. Shurtleff ◽  
M. Laufenberg ◽  
A. Bose ◽  
...  

2018 ◽  
Vol 7 (3.12) ◽  
pp. 945 ◽  
Author(s):  
Abul Khair ◽  
Mohd Rihan ◽  
Mohd Zuhaib

With increase in deregulations and renewable sources of generation, the power system network is leading towards more geographical spread and interconnectedness. This causes significant challenges requiring on-line monitoring and control. It also provides a path for disturbances to propagate causing cascading failure, even blackouts. Wide area detection of potential island formation and controlled separation is considered as an effective tool against a blackout under severe disturbances. In the present work one line remaining algorithm has been utilized for implementation of controlled islanding in a section of Indian power grid.  


2018 ◽  
Vol 9 (4) ◽  
pp. 1910-1920 ◽  
Author(s):  
Amir Golshani ◽  
Wei Sun ◽  
Qun Zhou ◽  
Qipeng P. Zheng ◽  
Jianhui Wang ◽  
...  

2017 ◽  
Vol 13 (6) ◽  
pp. 2802-2812 ◽  
Author(s):  
Amir Golshani ◽  
Wei Sun ◽  
Qun Zhou ◽  
Qipeng P. Zheng ◽  
Jianzhong Tong

Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 143-157
Author(s):  
Jovi Atkinson ◽  
Ibrahim M. Albayati

The operation and the development of power system networks introduce new types of stability problems. The effect of the power generation and consumption on the frequency of the power system can be described as a demand/generation imbalance resulting from a sudden increase/decrease in the demand and/or generation. This paper investigates the impact of a loss of generation on the transient behaviour of the power grid frequency. A simplified power system model is proposed to examine the impact of change of the main generation system parameters (system inertia, governor droop setting, load damping constant, and the high-pressure steam turbine power fraction), on the primary frequency response in responding to the disturbance of a 1.32 GW generation loss on the UK power grid. Various rates of primary frequency responses are simulated via adjusting system parameters of the synchronous generators to enable the controlled generators providing a fast-reliable primary frequency response within 10 s after a loss of generation. It is concluded that a generation system inertia and a governor droop setting are the most dominant parameters that effect the system frequency response after a loss of generation. Therefore, for different levels of generation loss, the recovery rate will be dependent on the changes of the governor droop setting values. The proposed model offers a fundamental basis for a further investigation to be carried on how a power system will react during a secondary frequency response.


Sign in / Sign up

Export Citation Format

Share Document