Finite‐time active shimmy control based on uncertain disturbance observer for electric vehicle with independent suspension

2020 ◽  
Vol 14 (13) ◽  
pp. 1835-1844
Author(s):  
Qinghua Meng ◽  
Chunjiang Qian ◽  
Chuan Hu ◽  
Zong‐Yao Sun ◽  
Pan Wang
Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2019 ◽  
Vol 369 ◽  
pp. 166-175 ◽  
Author(s):  
Huijuan Luo ◽  
Jinpeng Yu ◽  
Chong Lin ◽  
Zhanjie Liu ◽  
Lin Zhao ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xinyu Wen

This paper is concerned with disturbance-observer-based control (DOBC) for a class of time-delay systems with uncertain sinusoidal disturbances. The disturbances are decomposed as precise and uncertain parts using nonlinear disturbance observer (DO) after appropriate coordinate transformation. And then the two parts can be compensated by corresponding controller, respectively, such that the classic DOBC method is extended to uncertain disturbance rejection. One novel feature of the proposed method is that even if the precise disturbance parameters are inaccessible, the merits of DOBC can be inherited. By integrating the disturbance observers with feedback control laws with time delay, the disturbances can be rejected and the desired dynamic performances can be guaranteed. Finally, simulations for a flight control system are given to demonstrate the effectiveness of the results.


Sign in / Sign up

Export Citation Format

Share Document