scholarly journals Low‐profile patch antennas with enhanced horizontal omnidirectional gain for DSRC applications

2018 ◽  
Vol 12 (2) ◽  
pp. 246-253 ◽  
Author(s):  
Ankang Liu ◽  
Yilong Lu ◽  
Ling Huang
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Juhua Liu ◽  
Yue Kang ◽  
Jie Chen ◽  
Yunliang Long

A new kind of Yagi array of quarter-wave patch antennas is presented. The Yagi array has a low profile, a wide bandwidth, and a high gain. A main beam close to endfire is produced, with a vertical polarization in the horizontal plane. A set of microstrip lines are introduced between the driven element and the first director element to enhance the coupling between them, and therefore the bandwidth could be increased and the back lobes could be suppressed. Measured results show that the Yagi array with 4 elements generates a peak gain of about 9.7 dBi, a front-to-back ratio higher than 10 dB, and a 10 dB return loss band from 4.68 GHz to 5.24 GHz, with a profile of 1.5 mm and an overall size of 80 × 100 mm2. An increase of the number of director elements would enhance the gain and have the main beam pointing closer to endfire.


2020 ◽  
Vol 8 (5) ◽  
pp. 2469-2472

Dual-frequency planar antennas can substitute large bandwidth patch antennas, where there is a requirement for large bandwidth to cover two separate transmit receive bands. In this paper a novel single-feed, single layer, double-band, compact short loaded patch antenna is studied theoretically and experimentally. Besides the compactness, this design provides, dual frequency operation with a small frequency ratio of 1.3 between the two resonant bands. Various radiation characteristics are simulated as well as experimentally studied and good concurrence is observed between the simulated and measured results


Author(s):  
Abdelheq Boukarkar ◽  
Rachdi Satouh

Abstract We propose simple designs of compact patch antennas with bandwidth enhancement. Firstly, an inverted “L” strip is loaded onto the corner of one radiating patch edge to create an additional resonant mode which can be combined with that one of the conventional patch to enhance the operating bandwidth. Secondly, the “L” strip is replaced by inverted “T” strip to improve further the bandwidth by creating two adjustable resonant modes. The two proposed patch antennas have the particularity of enhancing the bandwidth significantly without increasing their profile and their overall sizes. Two antenna prototypes are fabricated and tested. Measurements reveal that the patch antenna loaded with “L” strip has stable radiation characteristics with 5.2 times enhancement in the relative bandwidth compared with a conventional patch antenna. The antenna loaded with inverted “T” strip has wider bandwidth (6.25 times wider than the conventional patch) and covers the operating band 5.07–5.89 GHz (15%) with measured peak gain and peak efficiency of 6.25 dBi and 78%, respectively. The proposed antennas are easy to fabricate, have a low-profile, and exhibit good performances which make them good candidates to use in real wireless applications.


Author(s):  
С.М. Фёдоров ◽  
И.А. Черноиваненко ◽  
Е.А. Ищенко

Рассматриваются методы проектирования для расширенной интеграции низкопрофильных антенн с солнечными системами для беспроводной связи малого радиуса действия. Необходимость перехода к более устойчивым источникам энергии возникает из-за чрезмерного производства вредных выбросов углерода. Основное внимание уделяется способам интеграции антенн и солнечных панелей из кристаллического кремния. Было предложено решение для минимизации чувствительности, которое использовалось для успешной изоляции микрополосковой линии передачи от солнечной решетки, что позволило продемонстрировать пять конфигураций антенн. Дальнейшая работа над кристаллическими солнечными панелями продемонстрировала их использование вместе с антеннами с круговой поляризацией для летательных аппаратов, а также позволила показать необходимость их использования совместно с Mesh-антеннами для небольших спутников. Солнечная дипольная антенна была разработана для использования внутри помещений с низким энергопотреблением. Эти подходы позволили создать инженерные возможности для уменьшения размера и веса устройства за счет интеграции технологий радио- и солнечных панелей. Представлены основные характеристики антенн для исследуемых случаев, произведено их сравнение, а также определено влияние на их параметры проводниковых материалов The article considers methods for advanced integration of low-profile antennas with solar systems for short-range wireless communications. The need to move to more sustainable energy sources arises from the excessive production of harmful carbon emissions. The focus is on the ways to integrate crystalline silicon antennas and solar panels. We proposed and used a solution to minimize sensitivity to successfully isolate the microstrip transmission line from the solar array, thus demonstrating five antenna configurations. Further work on crystalline solar panels demonstrated their use in conjunction with circularly polarized antennas for aircraft and it also allowed us to show the need for their use with Meshed Patch Antennas for small satellites. A solar dipole antenna was developed for low power indoor applications. These approaches created the engineering capability to reduce device size and weight by integrating radio and solar panel technologies. The article presents the main characteristics of antennas for the cases under study, compares them, and determines the effect of conductive material on their parameters


Sign in / Sign up

Export Citation Format

Share Document