Bandwidth enhancement of compact patch antennas by loading inverted “L” and “T” strips

Author(s):  
Abdelheq Boukarkar ◽  
Rachdi Satouh

Abstract We propose simple designs of compact patch antennas with bandwidth enhancement. Firstly, an inverted “L” strip is loaded onto the corner of one radiating patch edge to create an additional resonant mode which can be combined with that one of the conventional patch to enhance the operating bandwidth. Secondly, the “L” strip is replaced by inverted “T” strip to improve further the bandwidth by creating two adjustable resonant modes. The two proposed patch antennas have the particularity of enhancing the bandwidth significantly without increasing their profile and their overall sizes. Two antenna prototypes are fabricated and tested. Measurements reveal that the patch antenna loaded with “L” strip has stable radiation characteristics with 5.2 times enhancement in the relative bandwidth compared with a conventional patch antenna. The antenna loaded with inverted “T” strip has wider bandwidth (6.25 times wider than the conventional patch) and covers the operating band 5.07–5.89 GHz (15%) with measured peak gain and peak efficiency of 6.25 dBi and 78%, respectively. The proposed antennas are easy to fabricate, have a low-profile, and exhibit good performances which make them good candidates to use in real wireless applications.

Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant category among the different shaped micro-strip patch antennas because of its circular polarization and dual-resonant frequency features with a single feed. Elliptical and its derived shapes such as semielliptical, half-elliptical, slotted-elliptical and elliptical ring are found to be particularly instrumental for bandwidth enhancement and these antennas find great applications in Ultra Wide Band (UWB) and Super Wide Band (SWB) communications. Compared to antennas with circular or rectangular shapes, the design of EMPA is a research area of high potential as there is higher flexibility in its design due to more degrees of freedom. The reported literature in the field of EMPA is very less and there is ample scope for new researchers to work on. This review paper is an attempt to summarize and critically assess the-state-of-the-art design techniques as reported in literature and understand their effects on performance of elliptical patch antenna for suggesting new research fronts in the field of EMPA.


2020 ◽  
Vol 8 (5) ◽  
pp. 2469-2472

Dual-frequency planar antennas can substitute large bandwidth patch antennas, where there is a requirement for large bandwidth to cover two separate transmit receive bands. In this paper a novel single-feed, single layer, double-band, compact short loaded patch antenna is studied theoretically and experimentally. Besides the compactness, this design provides, dual frequency operation with a small frequency ratio of 1.3 between the two resonant bands. Various radiation characteristics are simulated as well as experimentally studied and good concurrence is observed between the simulated and measured results


In paper, a low profile microstrip patch antenna with rhombus model is designed at an running frequency at 2.4 GHz, 5.2 GHz. Microstrip Patch Antenna are suited to non-plane and plane areas, uncomplicated and effortless to design by used Printed Circuit Technology, it is a mechanically vigorous when it is ascended on rigid places and when the particular patch design model and dimension were selected, it has adjustable in view of resonance frequency, radiation design, impedance and polarization. High Frequency Structural Simulator (HFSS) is a definite component method solver for structures of EM (electromagnetic). The outcome values are discussed and analyzed in view of S11 (Return Loss), 3D Polar Plot, Radiation design and Gain. The value of S11 comes out to be -14.16dB for the designed antenna. The antenna measured length is nearly half wavelength in the dielectric, it is a highly censorious parameter, which governs the antenna resonant frequency. And the final values are simulated using High Frequency Structural Simulator


2021 ◽  
Vol 23 (05) ◽  
pp. 806-815
Author(s):  
Nivedita Mishra ◽  
◽  
Dr. Saima Beg ◽  
Anand Kumar Gupta ◽  
◽  
...  

The following is an abstract of the paper, the mirror image design parameters and effective results for an antenna with a rectangular microstrip overlay using IE3D software is described that outcomes of the simulations and designs are displayed. The probe feed approach was used to generate the microstrip patch pattern. Such patch antennas have been investigated due to their large bandwidth and gain. This antenna is fabricated on an FR-4 epoxy substrate. This antenna’s performance and results are also matched to a standard rectangular patch antenna. Variables are utilized to improve the antenna’s simulation results are as position, space, length, and width of different mirror images T and I shaped antenna slots. The measured results from the simulated design show that the designed construction resonates at various closely separated frequencies that are within the frequency band allotment for wireless applications. At resonance frequencies of 2GHz to 3GHz, the bandwidth and return loss are significantly enhanced.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Minkil Park ◽  
Wonhee Lee ◽  
Taeho Son

A composite Global Positioning System (GPS) patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR) bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Li Li ◽  
Yong Zhang ◽  
Jinhong Wang ◽  
Wei Zhao ◽  
Shuang Liu ◽  
...  

A compact patch antenna with stacked parasitic strips (SPSs) based on low temperature cofired ceramic (LTCC) technology is presented. By adding three pairs of SPSs above the traditional patch antenna, multiple resonant modes are excited to broaden the bandwidth. At the same time, the SPSs act as directors to guide the antenna radiation toward broadside direction to enhance the gain. The measured results show that the prototype antenna achieves an impedance bandwidth of 16% forS11<-10 dB (32.1–37.9 GHz) and a maximum gain of about 8 dBi at 35 GHz. Furthermore, the radiation patterns and gain are relatively stable within the operating bandwidth. The total volume of the antenna is only 8 × 8 × 1.1 mm3.


Sign in / Sign up

Export Citation Format

Share Document