Single soft switched isolated converter with constant output current for light emitting diode driver

2014 ◽  
Vol 7 (12) ◽  
pp. 3110-3115 ◽  
Author(s):  
Mohammad Reza Amini ◽  
Amin Emrani ◽  
Ehsan Adib ◽  
Hosein Farzanehfard
2013 ◽  
Vol 416-417 ◽  
pp. 2117-2122
Author(s):  
Wan Li Chen ◽  
Zhao Ping Wang ◽  
Xue Feng Dong

This paper designs a kind of new electrolytic capacitor-less LED (light-emitting diode) driver, which converts the commercial ac voltage to a pulsating current with twice the line frequency driving high-brightness LEDs. As no electrolytic capacitor is used, this driver possesses the unique advantage of long lifetime to match with that of LEDs. A method of injecting the third and fifth harmonics into the input current to reduce the peak-to-average ratio of the output current is also proposed. A 25V, 0.35A output prototype is built and tested in the laboratory, and the experimental results are presented to verify the effectiveness of the electrolytic capacitor-less LED driver and its control method.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983221 ◽  
Author(s):  
Zhi Gao ◽  
Xiaojing Yin ◽  
Bangcheng Zhang ◽  
Minmin Chen ◽  
Bo Li

Remaining life prediction is an effective way to optimize maintenance strategy and improve service life for light-emitting diode driving power in rail vehicle carriage. In this article, a Wiener process–based remaining life prediction method is proposed with the analysis of performance degradation data of light-emitting diode driving power in rail vehicle carriage. First, the temperature and humidity stress accelerated degradation tests are put forward in order to measure the output current of light-emitting diode driving power. Based on the output current, the accelerated degradation model is established. The drift and diffusion coefficients of the Wiener process are then obtained without prior information. Finally, the reliability of light-emitting diode driving power in rail vehicle carriage is assessed and the remaining lifetime is predicted after updating the degradation model parameters with Bayesian inference. The results show that the proposed method can improve the precision of assessment and reduce the uncertainty of prediction significantly. It also provides a potential solution for life prediction of other similar products.


2020 ◽  
pp. 144-148

Chaos synchronization of delayed quantum dot light emitting diode has been studied theortetically which are coupled via the unidirectional and bidirectional. at synchronization of chaotic, The dynamics is identical with delayed optical feedback for those coupling methods. Depending on the coupling parameters and delay time the system exhibits complete synchronization, . Under proper conditions, the receiver quantum dot light emitting diode can be satisfactorily synchronized with the transmitter quantum dot light emitting diode due to the optical feedback effect.


PIERS Online ◽  
2007 ◽  
Vol 3 (6) ◽  
pp. 821-824 ◽  
Author(s):  
Chien-Chang Tseng ◽  
Liang-Wen Ji ◽  
Yu Sheng Tsai ◽  
Fuh-Shyang Juang

Author(s):  
Tan Liong Ching ◽  
Nureize Binti Arbaiy

The smart store system (F3 Storage System) provides an inventory system function, and is supported by voice recognition for items searching purpose in the warehouse. This system is aimed to improve effectiveness in item searching process for the warehouse management. An inventory system structures is employed in this system to enable items management. Voice recognition facility helps the worker to search item in an effective way. Worker can use voice recognition function to search the item in the warehouse, and searched information of the item will be displayed in the liquid crystal display (LCD) screen. Meanwhile, the location of the item will be physically indicated by the light emitting diode (LED) light function. The developed system also contains a barcode system to enhance the process of scheduling warehouse activity. Such facilities will enhance the capabilities of existing inventory management systems in warehouses. Prototyping model is used to assist project development. Arduino technology is used to enable integrated hardware and software to read data or input. With Arduino technology, traditional search items by using text and search functionality are enhanced to allow speech functionality. This functionality makes the search process faster and more efficient.


Sign in / Sign up

Export Citation Format

Share Document