scholarly journals Macro‐model of PV module and its application for partial shading analysis

2018 ◽  
Vol 12 (15) ◽  
pp. 1748-1754 ◽  
Author(s):  
Zhang Mao ◽  
Zhong Sunan ◽  
Mao Peng ◽  
Sun Yanlong ◽  
Zhang Weiping
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


2015 ◽  
Vol 785 ◽  
pp. 106-110
Author(s):  
M.N.M. Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim ◽  
Kamarulazhar Daud

An identification system of multiple-input single-output (MISO) model is developed in controlling dsPIC microcontroller of positive output buck-boost (POBB) converters for module mismatch condition of photovoltaic (PV) system. In particular, the possibility of the scheme is to resolve the mismatch losses from the PV module either during shading or mismatch module occurrences. The MPPT algorithm is simplified by identification approach of indirect incorporated with a simple incremental direct method to form a combined direct and indirect (CoDId) algorithms. Irregular consumption of solar irradiation on a PV module shall step-up or step down the voltage regarding to the desired DC output voltage of POBB converter. This optimized algorithm will ensure that the PV module to kept at maximum power point (MPP), preventing power loss during module mismatch incident in PV module especially during partial shading condition. The simulation and laboratory results for PV module of polycrystalline Mitsubishi PV-AE125MF5N indicate that the proposed model and development of PV system architecture performs well, while the efficiency up to 97.7% at critical of low solar irradiance level. The controlling signal is based on low-cost embedded microcontroller of dsPIC30F Digital Signal Control (DSC).


Author(s):  
Jun-Oh Shin ◽  
Tae-Hee Jung ◽  
Tae-Bum Kim ◽  
Sung-Chul Woo ◽  
Na-Ri Yun ◽  
...  

2021 ◽  
Vol 297 ◽  
pp. 01051
Author(s):  
Mohammed Agdam ◽  
Abdallah Asbayou ◽  
Mustapha Elyaqouti ◽  
Ahmed Ihlal ◽  
Khaled Assalaou

To respond to the increase in demand for electricity, the use of photovoltaics is growing considerably as it produces electrical energy without polluting the environment. In addition, to enhance the efficiency of photovoltaic modules, an MPPT algorithm is required to follow the maximum voltage and maximum current in the IV curve. This technique can be achieved by using a DC-DC converter. For this purpose, various MPPT techniques have been developed. The combination of MPPT and DC-DC converter is implemented using Matlab/Simulink and connected to a modelled PV module to validate the simulation.


In India, solar energy meets consumer energy demand and majority of the plants are grid connected. Solar power is mainly depending on two factors, which are sun ray’s incident angle and change of environment conditions. The Maximum Power Point Tracking (MPPT) of photovoltaic (PV) module is necessary to maximize the extraction of PV power under partial shading conditions. The main aim of this paper is to highlight the design and implementation of 5MW solar plant with different power tracking techniques. In addition, the detailed explanation of various materials used to design the PV module is illustrated. This paper also describes the two types of solar rating panels that are used to get high power conversion efficiency as well as continuous power supply along with that the plant cost, monthly and yearly power production and corresponding efficiency is calculated.


2015 ◽  
Vol 16 (1) ◽  
pp. 15-21 ◽  
Author(s):  
B. Chitti Babu ◽  
Suresh Gurjar ◽  
Ashish Meher

Abstract Generally, the characteristics of photovoltaic (PV) array are largely affected by solar temperature, solar irradiance, shading patterns, array configuration and location of shading modules. Partial shading is due to moving clouds and shadows of nearby obstacles and can cause a significant degradation in the output of PV system. Hence, the characteristics of PV array get more multifaceted with multiple peaks. The ultimate aim of the paper is to analyze the performance of PV module during such adverse condition based on simplified two-diode model. To reduce the computational time, the simplified two-diode model has a photocurrent source in parallel with two ideal diodes. Only four parameters are required to be calculated from datasheet in order to simulate the model. Moreover, the performance of PV array is evaluated at different shaded patterns and it is found that the model has less computational time and gives accurate results.


The electrical power generation from solar photo voltaic arrays increases by reducing partial shading effect due to the deposition of dust in modules, shadow of nearby buildings, cloud coverage leads to mismatching power losses. This paper gives the detailed analysis of modeling, simulation and performance analysis of different 4x4 size PV array topologies under different irradiance levels and to extract output power of panels maximum by reducing the mismatching power losses. For this analysis, a comparative study of six PV array topologies are Series, Parallel, Series-Parallel, Total-Cross-Tied, Bridge Linked and Honey-Comb are considered under various shading conditions such as one module shading, one string shading, zigzag type partial shading and total PV array partially shaded cases. The performance of above six topologies are compare with mismatching power losses and fill-factor. For designing and simulation of different PV array configurations/topologies in MaTLab/Simulink, the LG Electronics LG215P1W PV module parameters are used in all PV modules.


Solar photovoltaic (PV) systems are gaining importance increasingly as it directly converts solar radiation into electrical energy which is renewable and environment friendly. Where it has a numerous advantage, some disadvantages are also there like its dependency on environmental conditions. The power developed by solar panel decreases if it does not get uniform radiation. Sometimes due to nearby buildings, passing clouds etc. PV module might be partially shaded because of which power output of solar panel may get decrease this is called partial shading conditions. It causes significant reduction in the system power output. To overcome this, maximum power point-tracking under partial shading condition by continuous duty cycle variation schemes have been proposed, in which dc–dc boost converters are connected to PV module to enable maximum power extraction. In this paper a new method of Duty Sweep Maximum Power Point Tracking (DSMPPT) has been implanted, which is capable of tracking the Global Maximum Power Point (GMPP) in the presence of other local maxima. The proposed scheme tracks Maximum Power Point (MPP) by continuous variation of converter’s duty cycle without the use of costly components such as signal converters and microprocessors thereby increasing the compactness of the system.


ACTA IMEKO ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 93
Author(s):  
Giovanni Bucci ◽  
Fabrizio Ciancetta ◽  
Edoardo Fiorucci ◽  
Antonio Delle Femine

<p class="Abstract">Shading is one of the most critical factors that produces a reduction in power in photovoltaic (PV) modules. The main causes of shading are related to cloud cover; local specificity; natural characteristics; building and other civil works; and the presence of the PV system itself. A reduction in overall radiation produces a consequent reduction in electric power. Another more problematic effect is associated with the partial shading of the PV modules. The shaded cell behaves as a load, dissipating energy and increasing its temperature. This effect can involve irreversible changes to the PV module, with a decrease in performance that can even cause the destruction of the shaded cell.</p><p>The main aim of this work is the development of a testing procedure for the performance evaluation of commercial PV modules in the presence of partial shading on one cell. Tests were carried out using thermographic and electric measurements and by varying the shading levels according to IEC standards. Shading up to total darkening is achieved by means of a number of filters that reduce the direct solar irradiance.</p><p>As a case study, a complete characterisation of a 180 Wp polycrystalline PV module was performed according to the proposed testing procedure, showing that high temperatures can be measured on the shaded PV module surface even if only 50 % of the surface of one cell of the PV module is darkened.</p>


Sign in / Sign up

Export Citation Format

Share Document