Experimental evaluation of reducing ranging-error based on receive signal strength indication in wireless sensor networks

2015 ◽  
Vol 5 (5) ◽  
pp. 228-234 ◽  
Author(s):  
Rencheng Jin ◽  
Zhiping Che ◽  
Qingye He ◽  
Liding Wang ◽  
Hao Xu
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


2018 ◽  
Vol 45 (8) ◽  
pp. 659 ◽  
Author(s):  
C. R. Krull ◽  
L. F. McMillan ◽  
R. M. Fewster ◽  
R. van der Ree ◽  
R. Pech ◽  
...  

Context Wireless sensor networks (WSNs) are revolutionising areas of animal behaviour research and are advantageous based on their ability to be deployed remotely and unobtrusively, for long time periods in inaccessible areas. Aims We aimed to determine the feasibility of using a WSN to track detailed movement paths of small animals, e.g. rats (Rattus spp.) 100–400g, too small for current GPS technology, by calibrating active Radio Frequency Identification (RFID) tags and loggers using Radio Frequency Signal Strength Indicator (RSSI) as a proxy for distance. Active RFIDs are also called Wireless Identification (WID) tags. Methods Calibration tests were conducted using a grid of loggers (n=16) spaced at 45-m intervals in clear line-of-sight conditions. WID tags (n=16) were placed between the loggers at 45-m intervals. Eight ‘walks’ were also conducted through the grid using a single WID tag. This involved attaching the tag to a small bottle of water (to simulate the body of an animal), towed around the grid using a 1-m long tow line attached to a volunteer walker. The volunteer also held a GPS device that logged their track. Models were constructed to test the effects of distance, tag movement and individual differences in loggers and tags on the reliability of movement data. Key results Loggers were most successful at detecting tags at distances <50m. However, there was a significant difference in the detection probabilities of individual loggers and also the transmission performance of individual tags. Static tags were less likely to be detected than the mobile tag; and although RSSI was somewhat related to distance, the reliability of this parameter was highly variable. Implications We recommend caution in the future use of current radio frequency ID tags in wireless sensor networks to track the movement of small animals, and in the use of RSSI as an indicator of individual distance values, as extensive in situ calibration is required. ‘Off the shelf’ devices may vary in performance, rendering data unreliable. We emphasise the importance of calibrating all equipment in animal tracking studies to reduce data uncertainty and error.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4179 ◽  
Author(s):  
Stelian Dolha ◽  
Paul Negirla ◽  
Florin Alexa ◽  
Ioan Silea

Wireless Sensor Networks (WSN) are widely used in different monitoring systems. Given the distributed nature of WSN, a constantly increasing number of research studies are concentrated on some important aspects: maximizing network autonomy, node localization, and data access security. The node localization and distance estimation algorithms have, as their starting points, different information provided by the nodes. The level of signal strength is often such a starting point. A system for Received Signal Strength Indicator (RSSI) acquisition has been designed, implemented, and tested. In this paper, experiments in different operating environments have been conducted to show the variation of Received Signal Strength Indicator (RSSI) metric related to distance and geometrical orientation of the nodes and environment, both indoor and outdoor. Energy aware data transmission algorithms adjust the power consumed by the nodes according to the relative distance between the nodes. Experiments have been conducted to measure the current consumed by the node depending on the adjusted transmission power. In order to use the RSSI values as input for distance or location detection algorithms, the RSSI values can’t be used without intermediate processing steps to mitigate with the non-linearity of the measured values. The results of the measurements confirmed that the RSSI level varies with distance, geometrical orientation of the sensors, and environment characteristics.


Sign in / Sign up

Export Citation Format

Share Document