scholarly journals Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 322 ◽  
Author(s):  
Damien Wohwe Sambo ◽  
Blaise Yenke ◽  
Anna Förster ◽  
Paul Dayang

During the past few years, Wireless Sensor Networks (WSNs) have become widely used due to their large amount of applications. The use of WSNs is an imperative necessity for future revolutionary areas like ecological fields or smart cities in which more than hundreds or thousands of sensor nodes are deployed. In those large scale WSNs, hierarchical approaches improve the performance of the network and increase its lifetime. Hierarchy inside a WSN consists in cutting the whole network into sub-networks called clusters which are led by Cluster Heads. In spite of the advantages of the clustering on large WSNs, it remains a non-deterministic polynomial hard problem which is not solved efficiently by traditional clustering. The recent researches conducted on Machine Learning, Computational Intelligence, and WSNs bring out the optimized clustering algorithms for WSNs. These kinds of clustering are based on environmental behaviors and outperform the traditional clustering algorithms. However, due to the diversity of WSN applications, the choice of an appropriate paradigm for a clustering solution remains a problem. In this paper, we conduct a wide review of proposed optimized clustering solutions nowadays. In order to evaluate them, we consider 10 parameters. Based on these parameters, we propose a comparison of these optimized clustering approaches. From the analysis, we observe that centralized clustering solutions based on the Swarm Intelligence paradigm are more adapted for applications with low energy consumption, high data delivery rate, or high scalability than algorithms based on the other presented paradigms. Moreover, when an application does not need a large amount of nodes within a field, the Fuzzy Logic based solution are suitable.


2021 ◽  
Vol 11 (22) ◽  
pp. 10924
Author(s):  
Fatma H. Elfouly ◽  
Rabie A. Ramadan ◽  
Ahmed Y. Khedr ◽  
Ahmad Taher Azar ◽  
Kusum Yadav ◽  
...  

 Wireless Sensor Networks (WSNs) became essential in developing many applications, including smart cities and Internet of Things (IoT) applications. WSN has been used in many critical applications such as healthcare, military, and transportation. Such applications depend mainly on the performance of the deployed sensor nodes. Therefore, the deployment process has to be perfectly arranged. However, the deployment process for a WSN is challenging due to many of the constraints to be taken into consideration. For instance, mobile nodes are already utilized in many applications, and their localization needs to be considered during the deployment process. Besides, heterogeneous nodes are employed in many recent applications due to their efficiency and cost-effectiveness. Moreover, the development areas might have different properties due to their importance. Those parameters increase the deployment complexity and make it hard to reach the best deployment scheme. This work, therefore, seeks to discover the best deployment plan for a WSN, considering these limitations throughout the deployment process. First, the deployment problem is defined as an optimization problem and mathematically formulated using Integer Linear Programming (ILP) to understand the problem better. The main objective function is to maximize the coverage of a given field with a network lifetime constraint. Nodes’ mobility and heterogeneity are added to the deployment constraints. The importance of the monitored field subareas is also introduced in this paper, where some subareas could have more importance than others. The paper utilizes Swarm Intelligence as a heuristic algorithm for the large-scale deployment problem. Simulation experiments show that the proposed algorithm produces efficient deployment schemes with a high coverage rate and minimum energy consumption compared to some recent algorithms. The proposed algorithm shows more than a 30% improvement in coverage and network lifetime. 


Author(s):  
Abdelhady M. Naguib ◽  
Shahzad Ali

Background: Many applications of Wireless Sensor Networks (WSNs) require awareness of sensor node’s location but not every sensor node can be equipped with a GPS receiver for localization, due to cost and energy constraints especially for large-scale networks. For localization, many algorithms have been proposed to enable a sensor node to be able to determine its location by utilizing a small number of special nodes called anchors that are equipped with GPS receivers. In recent years a promising method that significantly reduces the cost is to replace the set of statically deployed GPS anchors with one mobile anchor node equipped with a GPS unit that moves to cover the entire network. Objectives: This paper proposes a novel static path planning mechanism that enables a single anchor node to follow a predefined static path while periodically broadcasting its current location coordinates to the nearby sensors. This new path type is called SQUARE_SPIRAL and it is specifically designed to reduce the collinearity during localization. Results: Simulation results show that the performance of SQUARE_SPIRAL mechanism is better than other static path planning methods with respect to multiple performance metrics. Conclusion: This work includes an extensive comparative study of the existing static path planning methods then presents a comparison of the proposed mechanism with existing solutions by doing extensive simulations in NS-2.


2020 ◽  
pp. 147-168
Author(s):  
Anju Sangwan ◽  
Rishipal Singh

In the hostile areas, deployment of the sensor nodes in wireless sensor networks is one of the basic issue to be addressed. The node deployment method has great impact on the performance metrics like connectivity, security and resilience. In this paper, a technique based on strong keying mechanism is proposed which will enhance the security of a non-homogeneous network using the random deployment of the nodes. For this, the q-composite key pre-distribution technique is presented with new flavor that will enhance the network size as well as the security level in comparison to the existing techniques. The technique ensures the k-connectivity among the nodes with a redundant method to provide backup for failed nodes. In the simulation section, the performance of the proposed scheme is evaluated using NS-2 based upon the real model MICAz. A discussion based on various obtained results is also given in the paper.


Author(s):  
Corinna Schmitt ◽  
Georg Carle

Today the researchers want to collect as much data as possible from different locations for monitoring reasons. In this context large-scale wireless sensor networks are becoming an active topic of research (Kahn1999). Because of the different locations and environments in which these sensor networks can be used, specific requirements for the hardware apply. The hardware of the sensor nodes must be robust, provide sufficient storage and communication capabilities, and get along with limited power resources. Sensor nodes such as the Berkeley-Mote Family (Polastre2006, Schmitt2006) are capable of meeting these requirements. These sensor nodes are small and light devices with radio communication and the capability for collecting sensor data. In this chapter the authors review the key elements for sensor networks and give an overview on possible applications in the field of monitoring.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4309 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Abdullah Saeed Alwadie ◽  
Ahthasham Sajid ◽  
...  

Nowadays, there is a growing trend in smart cities. Therefore, the Internet of Things (IoT) enabled Underwater and Wireless Sensor Networks (I-UWSN) are mostly used for monitoring and exploring the environment with the help of smart technology, such as smart cities. The acoustic medium is used in underwater communication and radio frequency is mostly used for wireless sensor networks to make communication more reliable. Therefore, some challenging tasks still exist in I-UWSN, i.e., selection of multiple nodes’ reliable paths towards the sink nodes; and efficient topology of the network. In this research, the novel routing protocol, namely Time Based Reliable Link (TBRL), for dynamic topology is proposed to support smart city. TBRL works in three phases. In the first phase, it discovers the topology of each node in network area using a topology discovery algorithm. In the second phase, the reliability of each established link has been determined while using two nodes reliable model for a smart environment. This reliability model reduces the chances of horizontal and higher depth level communication between nodes and selects next reliable forwarders. In the third phase, all paths are examined and the most reliable path is selected to send data packets. TBRL is simulated with the help of a network simulator tool (NS-2 AquaSim). The TBRL is compared with other well known routing protocols, i.e., Depth Based Routing (DBR) and Reliable Energy-efficient Routing Protocol (R-ERP2R), to check the performance in terms of end to end delay, packet delivery ratio, and energy consumption of a network. Furthermore, the reliability of TBRL is compared with 2H-ACK and 3H-RM. The simulation results proved that TBRL performs approximately 15% better as compared to DBR and 10% better as compared to R-ERP2R in terms of aforementioned performance metrics.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Parvinder Singh ◽  
Rajeshwar Singh

A wireless sensor network consists of numerous low-power microsensor devices that can be deployed in a geographical area for remote sensing, surveillance, control, and monitoring applications. The advancements of wireless devices in terms of user-friendly interface, size, and deployment cost have given rise to many smart applications of wireless sensor networks (WSNs). However, certain issues like energy efficiency, long lifetime, and communication reliability restrict their large scale utilization. In WSNs, the cluster-based routing protocols assist nodes to collect, aggregate, and forward sensed data from event regions towards the sink node through minimum cost links. A clustering method helps to improve data transmission efficiency by dividing the sensor nodes into small groups. However, improper cluster head (CH) selection may affect the network lifetime, average network energy, and other quality of service (QoS) parameters. In this paper, a multiobjective clustering strategy is proposed to optimize the energy consumption, network lifetime, network throughput, and network delay. A fitness function has been formulated for heterogenous and homogenous wireless sensor networks. This fitness function is utilized to select an optimum CH for energy minimization and load balancing of cluster heads. A new hybrid clustered routing protocol is proposed based on fitness function. The simulation results conclude that the proposed protocol achieves better efficiency in increasing the network lifetime by 63%, 26%, and 10% compared with three well-known heterogeneous protocols: DEEC, EDDEEC, and ATEER, respectively. The proposed strategy also attains better network stability than a homogenous LEACH protocol.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3835 ◽  
Author(s):  
Muhammad Sohail ◽  
Shafiullah Khan ◽  
Rashid Ahmad ◽  
Dhananjay Singh ◽  
Jaime Lloret

Internet of things (IoT) is a very important research area, having many applications such as smart cities, intelligent transportation system, tracing, and smart homes. The underlying technology for IoT are wireless sensor networks (WSN). The selection of cluster head (CH) is significant as a part of the WSN’s optimization in the context of energy consumption. In WSNs, the nodes operate on a very limited energy source, therefore, the routing protocols designed must meet the optimal utilization of energy consumption in such networks. Evolutionary games can be designed to meet this aspect by providing an adequately efficient CH selection mechanism. In such types of mechanisms, the network nodes are considered intelligent and independent to select their own strategies. However, the existing mechanisms do not consider a combination of many possible parameters associated with the smart nodes in WSNs, such as remaining energy, selfishness, hop-level, density, and degree of connectivity. In our work, we designed an evolutionary game-based approach for CH selection, combined with some vital parameters associated with sensor nodes and the entire networks. The nodes are assumed to be smart, therefore, the aspect of being selfish is also addressed in this work. The simulation results indicate that our work performs much better than typical evolutionary game-based approaches.


Author(s):  
Tom Hayes ◽  
Falah Ali

The improved availability of sensor nodes has caused an increase in the number of researchers studying sensor networks. More recently, the introduction of mobility to these networks has been able to find solutions and create applications that were previously not possible. For this reason, this chapter firstly introduces the topic of mobile wireless sensor networks (MWSNs). It then explores the potential applications of the technology and discusses the challenges and requirements of the communications systems with a focus on routing. It also looks at performance metrics and evaluation techniques in terms of mathematical analysis, simulations and testbed implementations.


Sign in / Sign up

Export Citation Format

Share Document