Overhead distribution lines—some reflections on design

1986 ◽  
Vol 133 (7) ◽  
pp. 409 ◽  
Author(s):  
G. Orawski ◽  
J. Bradbury ◽  
M.J. Vanner
Keyword(s):  
2016 ◽  
Vol 136 (11) ◽  
pp. 878-883 ◽  
Author(s):  
Kazunori Nishimura ◽  
Yusaku Marui ◽  
Satonori Nishimura ◽  
Wataru Sunayama

1993 ◽  
Vol 113 (8) ◽  
pp. 881-888 ◽  
Author(s):  
Yasutomo Imai ◽  
Nobuyuki Fujiwara ◽  
Hiroshi Yokoyama ◽  
Tetsuro Shimomura ◽  
Koichi Yamaoka ◽  
...  

2009 ◽  
Author(s):  
H.R.P.M. de Oliveira ◽  
E.L. Batista ◽  
C. Lefort ◽  
C. de Salles ◽  
M.L.B. Martinez

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2699
Author(s):  
Marceli N. Gonçalves ◽  
Marcelo M. Werneck

Optical Current Transformers (OCTs) and Optical Voltage Transformers (OVTs) are an alternative to the conventional transformers for protection and metering purposes with a much smaller footprint and weight. Their advantages were widely discussed in scientific and technical literature and commercial applications based on the well-known Faraday and Pockels effect. However, the literature is still scarce in studies evaluating the use of optical transformers for power quality purposes, an important issue of power system designed to analyze the various phenomena that cause power quality disturbances. In this paper, we constructed a temperature-independent prototype of an optical voltage transformer based on fiber Bragg grating (FBG) and piezoelectric ceramics (PZT), adequate to be used in field surveys at 13.8 kV distribution lines. The OVT was tested under several disturbances defined in IEEE standards that can occur in the electrical power system, especially short-duration voltage variations such as SAG, SWELL, and INTERRUPTION. The results demonstrated that the proposed OVT presents a dynamic response capable of satisfactorily measuring such disturbances and that it can be used as a power quality monitor for a 13.8 kV distribution system. Test on the proposed system concluded that it was capable to reproduce up to the 41st harmonic without significative distortion and impulsive surges up to 2.5 kHz. As an advantage, when compared with conventional systems to monitor power quality, the prototype can be remote-monitored, and therefore, be installed at strategic locations on distribution lines to be monitored kilometers away, without the need to be electrically powered.


2021 ◽  
Vol 13 (11) ◽  
pp. 6099
Author(s):  
Giovanna Adinolfi ◽  
Roberto Ciavarella ◽  
Giorgio Graditi ◽  
Antonio Ricca ◽  
Maria Valenti

Integration of DC grids into AC networks will realize hybrid AC/DC grids, a new energetic paradigm which will become widespread in the future due to the increasing availability of DC-based generators, loads and storage systems. Furthermore, the huge connection of intermittent renewable sources to distribution grids could cause security and congestion issues affecting line behaviour and reliability performance. This paper aims to propose a planning tool for congestion forecasting and reliability assessment of overhead distribution lines. The tool inputs consist of a single line diagram of a real or synthetic grid and a set of 24-h forecasting time series concerning climatic conditions and grid resource operative profiles. The developed approach aims to avoid congestions criticalities, taking advantage of optimal active power dispatching among “congestion-nearby resources”. A case study is analysed to validate the implemented control strategy considering a modified IEEE 14-Bus System with introduction of renewables. The tool also implements reliability prediction formulas to calculate an overhead line reliability function in congested and congestions-avoided conditions. A quantitative evaluation underlines the reliability performance achievable after the congestion strategy action.


Author(s):  
Xiao-tong HUANG ◽  
Ji-biao HE ◽  
Yan-long YANG ◽  
Chuang-sheng CHEN ◽  
Rui-feng WANG ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document