Branch prediction using both global and local branch history information

2002 ◽  
Vol 149 (2) ◽  
pp. 33 ◽  
Author(s):  
M.-C. Chang ◽  
Y.-W. Chou
Author(s):  
Sweety Nain ◽  
Prachi Chaudhary

Background: In a parallel processor, the pipeline cannot fetch the conditional instructions with the next clock cycle, leading to a pipeline stall. So, conditional instructions create a problem in the pipeline because the proper path can only be known after the branch execution. To accurately predict branches, a significant predictor is proposed for the prediction of conditional branch instruction. Method: In this paper, a single branch prediction and a correlation branch prediction scheme are applied to the different trace files by using the concept of saturating counters. Further, a hybrid branch prediction scheme is proposed, which uses both global and local branch information, providing more accuracy than the single and correlation branch prediction schemes. Results: Firstly, a single branch prediction and correlation branch prediction technique are applied to the trace files using saturating counters. By comparison, it can be observed that a correlation branch prediction technique provides better results by enhancing the accuracy rate of 2.25% than the simple branch prediction. Further, a hybrid branch prediction scheme is proposed, which uses both global and local branch information, providing more accuracy than the single and correlation branch prediction schemes. The obtained results suggest that the proposed hybrid branch prediction schemes provide an increased accuracy rate of 3.68% and 1.43% than single branch prediction and correlation branch prediction. Conclusion: The proposed hybrid branch prediction scheme gives a lower misprediction rate and higher accuracy rate than the simple branch prediction scheme and correlation branch prediction scheme.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongyi Li ◽  
Shiqi Wang ◽  
Shuang Dong ◽  
Xueling Lv ◽  
Changzhi Lv ◽  
...  

At present, person reidentification based on attention mechanism has attracted many scholars’ interests. Although attention module can improve the representation ability and reidentification accuracy of Re-ID model to a certain extent, it depends on the coupling of attention module and original network. In this paper, a person reidentification model that combines multiple attentions and multiscale residuals is proposed. The model introduces combined attention fusion module and multiscale residual fusion module in the backbone network ResNet 50 to enhance the feature flow between residual blocks and better fuse multiscale features. Furthermore, a global branch and a local branch are designed and applied to enhance the channel aggregation and position perception ability of the network by utilizing the dual ensemble attention module, as along as the fine-grained feature expression is obtained by using multiproportion block and reorganization. Thus, the global and local features are enhanced. The experimental results on Market-1501 dataset and DukeMTMC-reID dataset show that the indexes of the presented model, especially Rank-1 accuracy, reach 96.20% and 89.59%, respectively, which can be considered as a progress in Re-ID.


2019 ◽  
Vol 9 (11) ◽  
pp. 2255 ◽  
Author(s):  
Yuting Liu ◽  
Hongyu Yang ◽  
Qijun Zhao

In this work, we focus on the misalignment problem in person re-identification. Human body parts commonly contain discriminative local representations relevant with identity recognition. However, the representations are easily affected by misalignment that is due to varying poses or poorly detected bounding boxes. We thus present a two-branch Deep Joint Learning (DJL) network, where the local branch generates misalignment robust representations by pooling the features around the body parts, while the global branch generates representations from a holistic view. A Hierarchical Feature Aggregation mechanism is proposed to aggregate different levels of visual patterns within body part regions. Instead of aggregating each pooled body part features from multi-layers with equal weight, we assign each with the learned optimal weight. This strategy also mitigates the scale differences among multi-layers. By optimizing the global and local features jointly, the DJL network further enhances the discriminative capability of the learned hybrid feature. Experimental results on Market-1501 and CUHK03 datasets show that our method could effectively handle the misalignment induced intra-class variations and yield competitive accuracy particularly on poorly aligned pedestrian images.


2000 ◽  
Vol 179 ◽  
pp. 155-160
Author(s):  
M. H. Gokhale

AbstractData on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun’s surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last decade or so.


2009 ◽  
Author(s):  
Paul van den Broek ◽  
Ben Seipel ◽  
Virginia Clinton ◽  
Edward J. O'Brien ◽  
Philip Burton ◽  
...  

2021 ◽  
Vol 657 ◽  
pp. 123-133
Author(s):  
JR Hancock ◽  
AR Barrows ◽  
TC Roome ◽  
AS Huffmyer ◽  
SB Matsuda ◽  
...  

Reef restoration via direct outplanting of sexually propagated juvenile corals is a key strategy in preserving coral reef ecosystem function in the face of global and local stressors (e.g. ocean warming). To advance our capacity to scale and maximize the efficiency of restoration initiatives, we examined how abiotic conditions (i.e. larval rearing temperature, substrate condition, light intensity, and flow rate) interact to enhance post-settlement survival and growth of sexually propagated juvenile Montipora capitata. Larvae were reared at 3 temperatures (high: 28.9°C, ambient: 27.2°C, low: 24.5°C) for 72 h during larval development, and were subsequently settled on aragonite plugs conditioned in seawater (1 or 10 wk) and raised in different light and flow regimes. These juvenile corals underwent a natural bleaching event in Kāne‘ohe Bay, O‘ahu, Hawai‘i (USA), in summer 2019, allowing us to opportunistically measure bleaching response in addition to survivorship and growth. This study demonstrates how leveraging light and flow can increase the survivorship and growth of juvenile M. capitata. In contrast, larval preconditioning and substrate conditioning had little overall effect on survivorship, growth, or bleaching response. Importantly, there was no optimal combination of abiotic conditions that maximized survival and growth in addition to bleaching tolerances. This study highlights the ability to tailor sexual reproduction for specific restoration goals by addressing knowledge gaps and incorporating practices that could improve resilience in propagated stocks.


Author(s):  
Melani McAlister

In October 2017, hundreds of faculty, friends, and former students gathered at the National Museum of African American History and Culture (NMAAHC) to remember James Oliver “Jim” Horton. It was a fitting gathering place. As the museum’s director, Lonnie Bunch, commented, Jim’s legacy is everywhere at the museum, from the fact that several of his former doctoral students are now curators to the foundational commitment of the museum itself: that African American history is not a local branch of US history but integral to its core. Jim always insisted in his lectures and classes and on his many TV appearances and public engagements that “American history is African American history.” 


Sign in / Sign up

Export Citation Format

Share Document