Neighbouring optimal feedback law for linear time-delayed dynamical systems

1993 ◽  
Vol 140 (5) ◽  
pp. 339
Author(s):  
A.Y. Lee
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xian-Feng Zhou ◽  
Song Liu ◽  
Wei Jiang

Some flaws on impulsive fractional differential equations (systems) have been found. This paper is concerned with the complete controllability of impulsive fractional linear time-invariant dynamical systems with delay. The criteria on the controllability of the system, which is sufficient and necessary, are established by constructing suitable control inputs. Two examples are provided to illustrate the obtained results.


2017 ◽  
Vol 59 (1) ◽  
pp. 115-133
Author(s):  
K. MOHAMED ◽  
A. MEHDI ◽  
M. ABDELKADER

We present a new iterative model order reduction method for large-scale linear time-invariant dynamical systems, based on a combined singular value decomposition–adaptive-order rational Arnoldi (SVD-AORA) approach. This method is an extension of the SVD-rational Krylov method. It is based on two-sided projections: the SVD side depends on the observability Gramian by the resolution of the Lyapunov equation, and the Krylov side is generated by the adaptive-order rational Arnoldi based on moment matching. The use of the SVD provides stability for the reduced system, and the use of the AORA method provides numerical efficiency and a relative lower computation complexity. The reduced model obtained is asymptotically stable and minimizes the error ($H_{2}$and$H_{\infty }$) between the original and the reduced system. Two examples are given to study the performance of the proposed approach.


2020 ◽  
pp. 81-85
Author(s):  
M. Isabel Garcıa-Planas

The networked multi-agent systems that they are interconnected via communication channels have great applicability in multiple areas, such as power grids, bioinformatics, sensor networks, vehicles, robotics and neuroscience, for example. Consequently, they have been widely studied by scientists in different fields in particular in the field of control theory. Recently an interest has grown to analyze the control properties as consensus controllability and observability of multi-agent dynamical systems motivated by the fact that the architecture of communication network in engineering multi-agent systems is usually adjustable. In this paper, we analyze how to improve the control properties in the case of multiagent linear time-invariant dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document