scholarly journals Kinematics, dynamics and control design of 4WIS4WID mobile robots

2015 ◽  
Vol 2015 (1) ◽  
pp. 6-16 ◽  
Author(s):  
Ming-Han Lee ◽  
Tzuu-Hseng S. Li
Author(s):  
John T. Cameron ◽  
Sean Brennan

This work presents results of an initial investigation into models and control strategies suitable to prevent vehicle rollover due to untripped driving maneuvers. Outside of industry, the study of vehicle rollover inclusive of both experimental validation and practical controller design is limited. The researcher interested in initiating study on rollover dynamics and control is left with the challenging task of identifying suitable vehicle models from the literature, comparing these models with experimental results, and determining suitable parameters for the models. This work addresses these issues via experimental testing of published models. Parameter estimation data based on model fits is presented, with commentary given on the validity of different methods. Experimental results are then presented and compared to the output predicted by the various models in both the time and frequency domain in order to provide a foundation for future work.


2005 ◽  
Vol 02 (02) ◽  
pp. 77-91 ◽  
Author(s):  
XIAOCHUAN WANG ◽  
SIMON X. YANG ◽  
MAX Q.-H. MENG

In this paper, a novel genetic algorithm based approach is proposed for optimal sensor placement and controller design of a mobile robot to facilitate its reactive navigation and obstacle avoidance in unknown environments. The mobile robots considered in this paper have flexible sensor and control structure. A genetic algorithm is developed to evolve the parameters of optimal sensor placement and controller design simultaneously. The effectiveness of the proposed GA based co-evolution approach to robot sensor placement and control design is demonstrated by simulation studies.


Sign in / Sign up

Export Citation Format

Share Document