scholarly journals Novel power electronic device for power angle stability control

Author(s):  
Hui Li ◽  
Yifan Li ◽  
Shaofeng Huang ◽  
Huigen Li
VLSI Design ◽  
1998 ◽  
Vol 6 (1-4) ◽  
pp. 91-95 ◽  
Author(s):  
A. Asenov ◽  
A. R. Brown ◽  
S. Roy ◽  
J. R. Barker

Topologically rectangular grids offer simplicity and efficiency in the design of parallel semiconductor device simulators tailored for mesh connected MIMD platforms. This paper presents several approaches to the generation of topologically rectangular 2D and 3D grids. The effects of the partitioning of such grids on different processor configurations are studied. A simulated annealing algorithm is used to optimise the partitioning of 2D and 3D grids on two dimensional arrays of processors. Problems related to the discretization, parallel matrix generation and solution strategy are discussed. The use of topologically rectangular grids is illustrated through the example of power electronic device simulation.


Author(s):  
Patrick W. Wilkerson ◽  
Andrzej J. Przekwas ◽  
Chung-Lung Chen

Multiscale multiphysics simulations were performed to analyze wirebonds for power electronic devices. Modern power-electronic devices can be subjected to extreme electrical and thermal conditions. Fully coupled electro-thermo-mechanical simulations were performed utilizing CFDRC’s CFD-ACE+ multiphysics simulation software and scripting capabilities. Use of such integrated multiscale multiphysics simulation and design tools in the design process can cut cost, shorten product development cycle time, and result in optimal designs. The parametrically designed multiscale multiphysics simulations performed allowed for a streamlined parametric analysis of the electrical, thermal, and mechanical effects on the wirebond geometry, bonding sites and power electronic device geometry. Multiscale analysis allowed for full device thermo-mechanical analysis as well as detailed analysis of wirebond structures. The multiscale simulations were parametrically scripted allowing for parametric simulations of the device and wirebond geometry as well as all other simulation variables. Analysis of heat dissipation from heat generated in the power-electronic device and through Joule heating were analyzed. The multiphysics analysis allowed for investigation of the location and magnitude of stress concentrations in the wirebond and device. These stress concentrations are not only investigated for the deformed wirebond itself, but additionally at the wirebond bonding sites and contacts. Changes in the wirebond geometry and bonding geometry, easily changed through the parametrically designed simulation scripts, allows for investigation of various wirebond geometries and operating conditions.


2014 ◽  
Vol 945-949 ◽  
pp. 2057-2061
Author(s):  
Lei Wu ◽  
Ya Zhou Gao

Active power filter (APF) is a new power electronic device used for reactive power compensation and dynamic harmonic suppression. Its performance depends on the highly precise detection of harmonic and reactive current. In view of the low pass filters defection in traditional ip-iq method, this paper proposes a wavelet filter based on wavelet analysis. This algorithm could attain higher detection precision with lower cost. The simulate results illustrate the efficiency and accuracy of it.


Author(s):  
Baseem Khan ◽  
Samuel Degarege ◽  
Fsaha Mebrahtu ◽  
Hassan Alhelou

This chapter examines the modeling and simulation of energy storage (battery, flywheel, etc.) systems interfaced to the power grid by using power electronic device, like chopper module, Rectifier module, and filter circuits, which are essential to the load balance between supply and demand, and to eliminate harmonics and to ensure efficient, cost effective, and reliable operations. Energy storage system in power grid is the same as memory in computer system. Energy efficiency is a key performance indicator for energy storage system. The energy storage system is the most promising component to enhance the system reliability and flexibility.


2022 ◽  
pp. 183-195
Author(s):  
Baseem Khan ◽  
Samuel Degarege ◽  
Fsaha Mebrahtu ◽  
Hassan Alhelou

This chapter examines the modeling and simulation of energy storage (battery, flywheel, etc.) systems interfaced to the power grid by using power electronic device, like chopper module, Rectifier module, and filter circuits, which are essential to the load balance between supply and demand, and to eliminate harmonics and to ensure efficient, cost effective, and reliable operations. Energy storage system in power grid is the same as memory in computer system. Energy efficiency is a key performance indicator for energy storage system. The energy storage system is the most promising component to enhance the system reliability and flexibility.


2011 ◽  
Vol 354-355 ◽  
pp. 1394-1399
Author(s):  
Su Rong Qu ◽  
Zhong Yang Zhang

IGCT is a kind of new type power electronic device which developed from GTO and IGBT . In this paper, Author based on analysis of the internal structure of GTO, shows how GTO development IGCT through technical methods.Through simulation of its off and on performance, the work curve and comparing results of the two devices are given. Then on two components of the inverter circuits are analyzed and compared. Thinking in large power AC drive locomotive, IGCT inverter is greatly simplifier than GTO inverter circuit, and superior performance,it will become the main converter for AC driving locomotive.


Sign in / Sign up

Export Citation Format

Share Document