scholarly journals Reconstructing solar magnetic fields from historical observations

2018 ◽  
Vol 616 ◽  
pp. A134 ◽  
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
K. Mursula

Aims. Sunspot activity is often hemispherically asymmetric, and during the Maunder minimum, activity was almost completely limited to one hemisphere. In this work, we use surface flux simulation to study how magnetic activity limited only to the southern hemisphere affects the long-term evolution of the photospheric magnetic field in both hemispheres. The key question is whether sunspot activity in one hemisphere is enough to reverse the polarity of polar fields in both hemispheres. Methods. We simulated the evolution of the photospheric magnetic field from 1978 to 2016 using the observed active regions of the southern hemisphere as input. We studied the flow of magnetic flux across the equator and its subsequent motion towards the northern pole. We also tested how the simulated magnetic field is changed when the activity of the southern hemisphere is reduced. Results. We find that activity in the southern hemisphere is enough to reverse the polarity of polar fields in both hemispheres by the cross-equatorial transport of magnetic flux. About 1% of the flux emerging in the southern hemisphere is transported across the equator, but only 0.1%–0.2% reaches high latitudes to reverse and regenerate a weak polar field in the northern hemisphere. The polarity reversals in the northern hemisphere are delayed compared to the southern hemisphere, leading to a quadrupole Sun lasting for several years.

2020 ◽  
Author(s):  
Iiro Virtanen ◽  
Ilpo Virtanen ◽  
Alexei Pevtsov ◽  
Kalevi Mursula

<p>The axial dipole moments of emerging active regions control the evolution of the axial dipole moment of the whole photospheric magnetic field and the strength of polar fields. Hale's and Joy's laws of polarity and tilt orientation affect the sign of the axial dipole moment of an active region, determining the normal sign for each solar cycle. If both laws are valid (or both violated), the sign of the axial moment is normal. However, for some active regions, only one of the two laws is violated, and the signs of these axial dipole moments are the opposite of normal. The opposite-sign axial dipole moments can potentially have a significant effect on the evolution of the photospheric magnetic field, including the polar fields.</p><p>We determine the axial dipole moments of active regions identified from magnetographic observations and study how the axial dipole moments of normal and opposite signs are distributed in time and latitude in solar cycles 21-24.We use active regions identified from the synoptic maps of the photospheric magnetic field measured at the National Solar Observatory (NSO) Kitt Peak (KP) observatory, the Synoptic Optical Long term Investigations of the Sun (SOLIS) vector spectromagnetograph (VSM), and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO).</p><p>We find that, typically, some 30% of active regions have opposite-sign axial dipole moments in every cycle, often making more than 20% of the total axial dipole moment. Most opposite-signed moments are small, but occasional large moments, which can affect the evolution of polar fields on their own, are observed. Active regions with such a large opposite-sign moment may include only a moderate amount of total magnetic flux. We find that in cycles 21-23 the northern hemisphere activates first and shows emergence of magnetic flux over a wider latitude range, while the southern hemisphere activates later, and emergence is concentrated to lower latitudes. We also note that cycle 24 differs from cycles 21-23 in many ways. Cycle 24 is the only cycle where the northern butterfly wing includes more active regions than the southern wing, and where axial dipole moment of normal sign emerges on average later than opposite-signed axial dipole moment. The total axial dipole moment and even the average axial moment of active regions is smaller in cycle 24 than in previous cycles.</p>


2019 ◽  
Vol 632 ◽  
pp. A39 ◽  
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
K. Mursula

Context. The axial dipole moments of emerging active regions control the evolution of the axial dipole moment of the whole photospheric magnetic field and the strength of polar fields. Hale’s and Joy’s laws of polarity and tilt orientation affect the sign of the axial dipole moment of an active region. If both laws are valid (or both violated), the sign of the axial moment is normal. However, for some active regions, only one of the two laws is violated, and the signs of these axial dipole moments are the opposite of normal. Those opposite-sign active regions can have a significant effect, for example, on the development of polar fields. Aims. Our aim is to determine the axial dipole moments of active regions identified from magnetographic observations and study how the axial dipole moments of normal and opposite signs are distributed in time and latitude in solar cycles 21−24. Methods. We identified active regions in the synoptic maps of the photospheric magnetic field measured at the National Solar Observatory (NSO) Kitt Peak (KP) observatory, the Synoptic Optical Long term Investigations of the Sun (SOLIS) vector spectromagnetograph (VSM), and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), and determined their axial dipole moments. Results. We find that, typically, some 30% of active regions have opposite-sign axial moments in every cycle, often making more than 20% of the total axial dipole moment. Most opposite-signed moments are small, but occasional large moments, which can affect the evolution of polar fields on their own, are observed. Active regions with such a large opposite-sign moment may include only a moderate amount of total magnetic flux. We find that in cycles 21−23 the northern hemisphere activates first and shows emergence of magnetic flux over a wider latitude range, while the southern hemisphere activates later, and emergence is concentrated to lower latitudes. Cycle 24 differs from cycles 21−23 in many ways. Cycle 24 is the only cycle where the northern butterfly wing includes more active regions than the southern wing, and where axial dipole moment of normal sign emerges on average later than opposite-signed axial dipole moment. The total axial dipole moment and even the average axial moment of active regions is smaller in cycle 24 than in previous cycles.


2020 ◽  
Author(s):  
Dmitrii Baranov ◽  
Elena Vernova ◽  
Marta Tyasto ◽  
Olga Danilova

<p>On the basis of the synoptic maps of the photospheric magnetic field obtained by the National Solar Observatory Kitt Peak for 1978-2016, a latitude-time diagram of the magnetic field was built. When averaging intensity values over the heliolongitude, the magnetic field sign was taken into account. In order to consider the characteristics of the distribution of weak magnetic fields an upper limit of 5 G was set.</p><p>The latitude-time diagram clearly shows inclined bands corresponding to positive and negative polarity magnetic flows drifting towards the poles of the Sun. Two groups of flows are observed: 1. Relatively narrow bands, with alternating polarity, beginning near the equator and reaching almost the poles of the Sun. Along the time axis, the flow length of one polarity is on the order of 1-2 years; 2. short powerful flows, 3-4.5 years wide, propagating from the spot zone to the poles. These flows reach the poles simultaneously with the begin of the polar field reversal, apparently representing  the so-called “Rush to the Poles” phenomenon.</p><p>The pattern of magnetic field transport is significantly different for the northern and southern hemispheres. Alternating flows of positive and negative polarities most clearly appear in the southern hemisphere during periods of positive polarity of the southern polar field. For the northern hemisphere the picture is much less clear but for individual time intervals alternating flows of opposite polarities can be traced. The slopes of magnetic flux bands allow us to estimate the rate of meridional drift of magnetic fields, which was slightly different for the two hemispheres: V = (16±2) m/s for the southern hemisphere and V = (21±4) m/s for the northern hemisphere. The results obtained indicate that the distribution of weak magnetic fields over the surface of the Sun has a complex structure that is different for the two hemispheres and varies from cycle to cycle.</p>


2000 ◽  
Vol 179 ◽  
pp. 303-306
Author(s):  
S. D. Bao ◽  
G. X. Ai ◽  
H. Q. Zhang

AbstractWe compute the signs of two different current helicity parameters (i.e., αbestandHc) for 87 active regions during the rise of cycle 23. The results indicate that 59% of the active regions in the northern hemisphere have negative αbestand 65% in the southern hemisphere have positive. This is consistent with that of the cycle 22. However, the helicity parameterHcshows a weaker opposite hemispheric preference in the new solar cycle. Possible reasons are discussed.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


The Sun’s magnetic activity varies cyclically, with a well-defined mean period of about 11 years. At the beginning of a new cycle, spots appear at latitudes around ±30°; then the zones of activity expand and drift towards the equator, where they die away as the new cycle starts again at higher latitudes. Active regions are typically oriented parallel to the equator, with oppositely directed magnetic fields in leading and following regions. The sense of these fields is opposite in the two hemispheres and reverses at sunspot minimum. So the magnetic cycle has a 22-year period, with waves of activity that drift towards the equator. Sunspot records show that there was a dearth of spots in the late 17th century - the Maunder minimum - which can also be detected in proxy records.


1998 ◽  
Vol 167 ◽  
pp. 415-418
Author(s):  
Kirill M. Kuzanyan

AbstractThe main magnetic activity of the Sun can be visualised by Maunder butterfly diagrams which represent the spatio-temporal distribution of sunspots. Besides sunspots there are other tracers of magnetic activity, like filaments and active regions, which are observable over a wider latitudinal range of the Sun. Both these phenomena allow one to consider a complete picture of solar magnetic activity, which should be explained in the framework of one relatively simple model.A kinematic αѡ-dynamo model of the magnetic field’s generation in a thin convection shell with nonuniform helicity for large dynamo numbers is considered in the framework of Parker’s migratory dynamo. The obtained asymptotic solution of equations governing the magnetic field has a form of a modulated travelling dynamo wave. This wave propagates over the most latitudes of the solar hemisphere equatorwards, and the amplitude of the magnetic field first increases and then decreases with the propagation. Over the subpolar latitudes the dynamo wave reverses, there the dynamo wave propagates polewards and decays with latitude. Butterfly diagrams are plotted and analyzed.There is an attractive opportunity to develop a more quantitatively precise model taking into account helioseismological data on differential rotation and fitting the solar observational data on the magnetic field and turbulence, analyzing the helicity and the phase shift between toroidal and poloidal components of the field.


2019 ◽  
Vol 627 ◽  
pp. A11
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
L. Bertello ◽  
A. Yeates ◽  
...  

Aims. The evolution of the photospheric magnetic field has only been regularly observed since the 1970s. The absence of earlier observations severely limits our ability to understand the long-term evolution of solar magnetic fields, especially the polar fields that are important drivers of space weather. Here, we test the possibility to reconstruct the large-scale solar magnetic fields from Ca II K line observations and sunspot magnetic field observations, and to create synoptic maps of the photospheric magnetic field for times before modern-time magnetographic observations. Methods. We reconstructed active regions from Ca II K line synoptic maps and assigned them magnetic polarities using sunspot magnetic field observations. We used the reconstructed active regions as input in a surface flux transport simulation to produce synoptic maps of the photospheric magnetic field. We compared the simulated field with the observed field in 1975−1985 in order to test and validate our method. Results. The reconstruction very accurately reproduces the long-term evolution of the large-scale field, including the poleward flux surges and the strength of polar fields. The reconstruction has slightly less emerging flux because a few weak active regions are missing, but it includes the large active regions that are the most important for the large-scale evolution of the field. Although our reconstruction method is very robust, individual reconstructed active regions may be slightly inaccurate in terms of area, total flux, or polarity, which leads to some uncertainty in the simulation. However, due to the randomness of these inaccuracies and the lack of long-term memory in the simulation, these problems do not significantly affect the long-term evolution of the large-scale field.


2004 ◽  
Vol 219 ◽  
pp. 128-132
Author(s):  
S. V. Berdyugina ◽  
I. G. Usoskin

Using a new Sun-as-a-star approach we analyze sunspot group data for the past 120 years and reveal that sunspots are formed preferably in two persistent migrating active longitudes 180° apart. Their migration is determined by changes of the mean latitude of sunspots and the surface differential rotation. The two active regions periodically alternate being the dominant region with a period of about 3.7 years similar to the “flip-flop” phenomenon known in starspot activity. The fact that the Sun shows the same pattern of magnetic activity as highly active stars strengthens the solar paradigm for magnetic activity on cool stars.


Sign in / Sign up

Export Citation Format

Share Document