scholarly journals Disentangling multiple high-energy emission components in the Vela X pulsar wind nebula with the Fermi Large Area Telescope

2018 ◽  
Vol 617 ◽  
pp. A78 ◽  
Author(s):  
L. Tibaldo ◽  
R. Zanin ◽  
G. Faggioli ◽  
J. Ballet ◽  
M.-H. Grondin ◽  
...  

Context. Vela X is a pulsar wind nebula in which two relativistic particle populations with distinct spatial and spectral distributions dominate the emission at different wavelengths. An extended 2° × 3° nebula is seen in radio and GeV gamma rays. An elongated cocoon prevails in X-rays and TeV gamma rays. Aims. We use ~9.5 yr of data from the Fermi Large Area Telescope (LAT) to disentangle gamma-ray emission from the two components in the energy range from 10 GeV to 2 TeV, bridging the gap between previous measurements at GeV and TeV energies. Methods. We determine the morphology of emission associated to Vela X separately at energies <100 and >100 GeV, and compare it to the morphology seen at other wavelengths. Then, we derive the spectral energy distribution of the two gamma-ray components over the full energy range. Results. The best overall fit to the LAT data is provided by the combination of the two components derived at energies <100 and >100 GeV. The first component has a soft spectrum, spectral index 2.19 ± 0.16−0.22+0.05, and extends over a region of radius 1.°36±0.°04, consistent with the size of the radio nebula. The second component has a harder spectrum, spectral index 0.9 ± 0.3−0.1+0.3, and is concentrated over an area of radius 0.°63±0.°03, coincident with the X-ray cocoon that had already been established as accounting for the bulk of the emission at TeV energies. Conclusions. The spectrum measured for the low-energy component corroborates previous evidence for a roll-over of the electron spectrum in the extended radio nebula at energies of a few tens of GeV possibly due to diffusive escape. The high-energy component has a very hard spectrum: if the emission is produced by electrons with a power-law spectrum, the electrons must be uncooled, and there is a hint that their spectrum may be harder than predictions by standard models of Fermi acceleration at relativistic shocks.

2010 ◽  
Vol 27 (4) ◽  
pp. 431-438 ◽  
Author(s):  
H. Steinle

AbstractCen A, at a distance of less than 4 Mpc, is the nearest radio-loud AGN. Its emission is detected from radio to very-high energy gamma-rays. Despite the fact that Cen A is one of the best studied extragalactic objects the origin of its hard X-ray and soft gamma-ray emission (100 keV <E< 50 MeV) is still uncertain. Observations with high spatial resolution in the adjacent soft X-ray and hard gamma-ray regimes suggest that several distinct components such as a Seyfert-like nucleus, relativistic jets, and even luminous X-ray binaries within Cen A may contribute to the total emission in the MeV regime that has been detected with low spatial resolution. As the Spectral Energy Distribution of Cen A has its second maximum around 1 MeV, this energy range plays an important role in modeling the emission of (this) AGN. As there will be no satellite mission in the near future that will cover this energies with higher spatial resolution and better sensitivity, an overview of all existing hard X-ray and soft gamma-ray measurements of Cen A is presented here defining the present knowledge on Cen A in the MeV energy range.


2020 ◽  
Vol 492 (4) ◽  
pp. 5980-5986
Author(s):  
M Araya

ABSTRACT G279.0+1.1 is a supernova remnant (SNR) with poorly known parameters, first detected as a dim radio source and classified as an evolved system. An analysis of data from the Fermi-Large Area Telescope (LAT) revealing for the first time an extended source of gamma-rays in the region is presented. The diameter of the GeV region found is ${\sim} 2{^{\circ}_{.}}8$, larger than the latest estimate of the SNR size from radio data. The gamma-ray emission covers most of the known shell and extends further to the north and east of the bulk of the radio emission. The photon spectrum in the 0.5–500 GeV range can be described by a simple power law, $\frac{\mathrm{ d}N}{\mathrm{ d}E} \propto E^{-\Gamma }$, with a spectral index of Γ = 1.86 ± 0.03stat ± 0.06sys. In the leptonic scenario, a steep particle spectrum is required and a distance lower than the previously estimated value of 3 kpc is favoured. The possibility that the high-energy emission results from electrons that already escaped the SNR is also investigated. A hadronic scenario for the gamma-rays yields a particle spectral index of ∼2.0 and no significant constraints on the distance. The production of gamma-rays in old SNRs is discussed. More observations of this source are encouraged to probe the true extent of the shell and its age.


2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


1986 ◽  
Vol 89 ◽  
pp. 305-321
Author(s):  
Richard I. Epstein

AbstractThe power per logarithmic bandwidth in gamma-ray burst spectra generally increases rapidly with energy through the x-ray range and does not cut off sharply above a few MeV. This spectral form indicates that a very small fraction of the energy from a gamma-ray burst source is emitted at low energies or is reprocessed into x-rays and that the high-energy gamma rays are not destroyed by photon-photon interactions. The implications are that the emission mechanism for the gamma-ray bursts is not synchrotron radiation from electrons that lose most of their energy before being re-accelerated and that either the regions from which the gamma rays are emitted are large compared to the size of a neutron star or the emission is collimated and beamed away from the stellar surface.


1994 ◽  
Vol 142 ◽  
pp. 707-711
Author(s):  
H. Aurass ◽  
A. Hofmann ◽  
E. Rieger

AbstractVector magnetogram data and Hα pictures together with data published by Chupp et al. lead us to conjecture that in the presented case a contact between the rising two-ribbon flare current sheet and a coronal loop connecting two nearby plage regions initiates efficient high-energy γ-ray emission.Subject headings: Sun: corona — Sun: flares — Sun: X-rays, gamma rays


2019 ◽  
Vol 207 ◽  
pp. 02001
Author(s):  
Anna Franckowiak

In September 22, 2017, IceCube released a public alert announcing the detection of a 290 TeV neutrino track event with an angular uncertainty of one square degree (90% containment). A multi-messenger follow-up campaign was initiated resulting in the detection of a GeV gamma-ray flare by the Fermi Large Area Telescope positionally consistent with the location of the known Bl Lac object, TXS 0506+056 , located only 0.1 degrees from the best-fit neutrino position. The probability of finding a GeV gamma-ray flare in coincidence with a high-energy neutrino event assuming a correlation of the neutrino flux with the gamma-ray energy flux in the energy band between 1 and 100 GeV was calculated to be 3σ (after trials correction). Following the detection of the flaring blazar the imaging air Cherenkov telescope MAGIC detected the source for the first time in the > 100 GeV gamma-ray band. The activity of the source was confirmed in X-ray, optical and radio wavelength. Several groups have developed lepto-hadronic models which succeed to explain the multi-messenger spectral energy distribution.


2020 ◽  
Vol 493 (2) ◽  
pp. 2438-2451
Author(s):  
B Arsioli ◽  
Y-L Chang ◽  
B Musiimenta

ABSTRACT This paper presents the results of a γ-ray likelihood analysis over all the extreme and high synchrotron peak blazars (EHSP and HSP) from the 3HSP catalogue. We investigate 2013 multifrequency positions under the eyes of Fermi Large Area Telescope, considering 11 yr of observations in the energy range between 500 MeV and 500 GeV, which results in 1160 γ-ray signatures detected down to the TS=9 threshold. The detections include 235 additional sources concerning the Fermi Large Area Telescope Fourth Source Catalog (4FGL), all confirmed via high-energy TS (Test Statistic) maps, and represent an improvement of ∼25 per cent for the number of EHSP and HSP currently described in γ-rays. We build the γ-ray spectral energy distribution (SED) for all the 1160 2BIGB sources, plot the corresponding γ-ray logN−logS, and measure their total contribution to the extragalactic gamma-ray background, which reaches up to ∼33 per cent at 100 GeV. Also, we show that the γ-ray detectability improves according to the synchrotron peak flux as represented by the figure of merit parameter, and note that the search for TeV peaked blazars may benefit from considering HSP and EHSP as a whole, instead of EHSPs only. The 2BIGB acronym stands for ‘Second Brazil-ICRANet Gamma-ray Blazars’ catalogue, and all the broad-band models and SED data points will be available on public data repositories (OpenUniverse, GitHub, and Brazilian Science Data Center-BSDC).


1994 ◽  
Vol 142 ◽  
pp. 645-648
Author(s):  
E. Rieger

AbstractBursts have been observed by the gamma-ray spectrometer on SMM at medium- and high-energy gamma-rays that precede the flare maximum. The negligible contribution of nuclear lines in the spectra of these events and their impulsive appearance suggests that they are hard-electron-dominated events superposed on the flares. Spatial resolution at gamma-ray energies will be necessary to decide whether this kind of bursts is cospatial with the flares or whether they occur in the flares’ vicinity.Subject headings: Sun: flares — Sun: X-rays, gamma rays


2019 ◽  
Vol 626 ◽  
pp. A12 ◽  
Author(s):  
M. E. Ravasio ◽  
G. Oganesyan ◽  
O. S. Salafia ◽  
G. Ghirlanda ◽  
G. Ghisellini ◽  
...  

GRB 190114C is the first gamma-ray burst detected at very high energies (VHE, i.e., > 300 GeV) by the MAGIC Cherenkov telescope. The analysis of the emission detected by the Fermi satellite at lower energies, in the 10 keV–100 GeV energy range, up to ∼50 s (i.e., before the MAGIC detection) can hold valuable information. We analyze the spectral evolution of the emission of GRB 190114C as detected by the Fermi Gamma-Ray Burst Monitor (GBM) in the 10 keV–40 MeV energy range up to ∼60 s. The first 4 s of the burst feature a typical prompt emission spectrum, which can be fit by a smoothly broken power-law function with typical parameters. Starting on ∼4 s post-trigger, we find an additional nonthermal component that can be fit by a power law. This component rises and decays quickly. The 10 keV–40 MeV flux of the power-law component peaks at ∼6 s; it reaches a value of 1.7 × 10−5 erg cm−2 s−1. The time of the peak coincides with the emission peak detected by the Large Area Telescope (LAT) on board Fermi. The power-law spectral slope that we find in the GBM data is remarkably similar to that of the LAT spectrum, and the GBM+LAT spectral energy distribution seems to be consistent with a single component. This suggests that the LAT emission and the power-law component that we find in the GBM data belong to the same emission component, which we interpret as due to the afterglow of the burst. The onset time allows us to estimate that the initial jet bulk Lorentz factor Γ0 is about 500, depending on the assumed circum-burst density.


2013 ◽  
Vol 53 (A) ◽  
pp. 545-549 ◽  
Author(s):  
Aldo Morselli

Successfully launched in June 2008, the Fermi Gamma-ray Space Telescope, formerly named GLAST, has been observing the high-energy gamma-ray sky with unprecedented sensitivity in<br />the 20MeV ÷ 300 GeV energy range and electrons + positrons in the 7 GeV ÷ 1TeV range, opening a new observational window on a wide variety of astrophysical objects.


Sign in / Sign up

Export Citation Format

Share Document