scholarly journals The LOFAR Two-metre Sky Survey

2019 ◽  
Vol 622 ◽  
pp. A3 ◽  
Author(s):  
K. J. Duncan ◽  
J. Sabater ◽  
H. J. A. Röttgering ◽  
M. J. Jarvis ◽  
D. J. B. Smith ◽  
...  

The LOFAR Two-metre Sky Survey (LoTSS) is a sensitive, high-resolution 120–168 MHz survey of the Northern sky. The LoTSS First Data Release (DR1) presents 424 square degrees of radio continuum observations over the HETDEX Spring Field (10h45m00s < right ascension <  15h30m00s and 45°00′00″ < declination < 57°00′00″) with a median sensitivity of 71 μJy beam−1 and a resolution of 6″. In this paper we present photometric redshifts (photo-z) for 94.4% of optical sources over this region that are detected in the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) 3π steradian survey. Combining the Pan-STARRS optical data with mid-infrared photometry from the Wide-field Infrared Survey Explorer, we estimate photo-zs using a novel hybrid photometric redshift methodology optimised to produce the best possible performance for the diverse sample of radio continuum selected sources. For the radio-continuum detected population, we find an overall scatter in the photo-z of 3.9% and an outlier fraction (|zphot−zspec|/(1 + zspec) > 0.15) of 7.9%. We also find that, at a given redshift, there is no strong trend in photo-z quality as a function of radio luminosity. However there are strong trends as a function of redshift for a given radio luminosity, a result of selection effects in the spectroscopic sample and/or intrinsic evolution within the radio source population. Additionally, for the sample of sources in the LoTSS First Data Release with optical counterparts, we present rest-frame optical and mid-infrared magnitudes based on template fits to the consensus photometric (or spectroscopic when available) redshift.

2019 ◽  
Vol 625 ◽  
pp. A2 ◽  
Author(s):  
K. Kuijken ◽  
C. Heymans ◽  
A. Dvornik ◽  
H. Hildebrandt ◽  
J. T. A. de Jong ◽  
...  

Context. The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope, specifically designed for measuring weak gravitational lensing by galaxies and large-scale structure. When completed it will consist of 1350 square degrees imaged in four filters (ugri). Aims. Here we present the fourth public data release which more than doubles the area of sky covered by data release 3. We also include aperture-matched ZYJHKs photometry from our partner VIKING survey on the VISTA telescope in the photometry catalogue. We illustrate the data quality and describe the catalogue content. Methods. Two dedicated pipelines are used for the production of the optical data. The ASTRO-WISE information system is used for the production of co-added images in the four survey bands, while a separate reduction of the r-band images using the THELI pipeline is used to provide a source catalogue suitable for the core weak lensing science case. All data have been re-reduced for this data release using the latest versions of the pipelines. The VIKING photometry is obtained as forced photometry on the THELI sources, using a re-reduction of the VIKING data that starts from the VISTA pawprints. Modifications to the pipelines with respect to earlier releases are described in detail. The photometry is calibrated to the Gaia DR2 G band using stellar locus regression. Results. In this data release a total of 1006 square-degree survey tiles with stacked ugri images are made available, accompanied by weight maps, masks, and single-band source lists. We also provide a multi-band catalogue based on r-band detections, including homogenized photometry and photometric redshifts, for the whole dataset. Mean limiting magnitudes (5σ in a 2″ aperture) and the tile-to-tile rms scatter are 24.23 ± 0.12, 25.12 ± 0.14, 25.02 ± 0.13, 23.68 ± 0.27 in ugri, respectively, and the mean r-band seeing is 0.​​″70.


2019 ◽  
Vol 622 ◽  
pp. A1 ◽  
Author(s):  
T. W. Shimwell ◽  
C. Tasse ◽  
M. J. Hardcastle ◽  
A. P. Mechev ◽  
W. L. Williams ◽  
...  

The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120–168 MHz survey of the entire northern sky for which observations are now 20% complete. We present our first full-quality public data release. For this data release 424 square degrees, or 2% of the eventual coverage, in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00′00″ to 57°00′00″) were mapped using a fully automated direction-dependent calibration and imaging pipeline that we developed. A total of 325 694 sources are detected with a signal of at least five times the noise, and the source density is a factor of ∼10 higher than the most sensitive existing very wide-area radio-continuum surveys. The median sensitivity is S144 MHz = 71 μJy beam−1 and the point-source completeness is 90% at an integrated flux density of 0.45 mJy. The resolution of the images is 6″ and the positional accuracy is within 0.2″. This data release consists of a catalogue containing location, flux, and shape estimates together with 58 mosaic images that cover the catalogued area. In this paper we provide an overview of the data release with a focus on the processing of the LOFAR data and the characteristics of the resulting images. In two accompanying papers we provide the radio source associations and deblending and, where possible, the optical identifications of the radio sources together with the photometric redshifts and properties of the host galaxies. These data release papers are published together with a further ∼20 articles that highlight the scientific potential of LoTSS.


2020 ◽  
Vol 636 ◽  
pp. A12
Author(s):  
E. Retana-Montenegro ◽  
H. J. A. Röttgering

We present an estimate of the optical luminosity function (OLF) of LOFAR radio-selected quasars (RSQs) at 1.4 <  z <  5.0 in the 9.3 deg2 NOAO Deep Wide-field survey (NDWFS) of the Boötes field. The selection was based on optical and mid-infrared photometry used to train three different machine learning (ML) algorithms (Random forest, SVM, Bootstrap aggregation). Objects taken as quasars by the ML algorithms are required to be detected at ≥5σ significance in deep radio maps to be classified as candidate quasars. The optical imaging came from the Sloan Digital Sky Survey and the Pan-STARRS1 3π survey; mid-infrared photometry was taken from the Spitzer Deep, Wide-Field Survey; and radio data was obtained from deep LOFAR imaging of the NDWFS-Boötes field. The requirement of a 5σ LOFAR detection allowed us to reduce the stellar contamination in our sample by two orders of magnitude. The sample comprises 130 objects, including both photometrically selected candidate quasars (47) and spectroscopically confirmed quasars (83). The spectral energy distributions calculated using deep photometry available for the NDWFS-Boötes field confirm the validity of the photometrically selected quasars using the ML algorithms as robust candidate quasars. The depth of our LOFAR observations allowed us to detect the radio-emission of quasars that would be otherwise classified as radio-quiet. Around 65% of the quasars in the sample are fainter than M1450 = −24.0, a regime where the OLF of quasars selected through their radio emission, has not been investigated in detail. It has been demonstrated that in cases where mid-infrared wedge-based AGN selection is not possible due to a lack of appropriate data, the selection of quasars using ML algorithms trained with optical and infrared photometry in combination with LOFAR data provides an excellent approach for obtaining samples of quasars. The OLF of RSQs can be described by pure luminosity evolution at z <  2.4, and a combined luminosity and density evolution at z >  2.4. The faint-end slope, α, becomes steeper with increasing redshift. This trend is consistent with previous studies of faint quasars (M1450 ≤ −22.0). We demonstrate that RSQs show an evolution that is very similar to that exhibited by faint quasars. By comparing the spatial density of RSQs with that of the total (radio-detected plus radio-undetected) faint quasar population at similar redshifts, we find that RSQs may compose up to ∼20% of the whole faint quasar population. This fraction, within uncertainties, is constant with redshift. Finally, we discuss how the compactness of the RSQs radio-morphologies and their steep spectral indices could provide valuable insights into how quasar and radio activity are triggered in these systems.


Author(s):  
K. J. Duncan ◽  
R. Kondapally ◽  
M. J. I. Brown ◽  
M. Bonato ◽  
P.N. Best ◽  
...  

2005 ◽  
Vol 216 ◽  
pp. 347-352
Author(s):  
Hiroshi Shibai

The next survey mission, ASTRO-F, is scheduled for launch in 2005. This is the first Japanese satellite dedicated to infrared astronomy. The primary purpose of this project is to investigate the birth and evolution of galaxies in the early universe through deep, wide-field surveys at wavelengths ranging from 2 to 200 microns. In the far-infrared wavelength band, ASTRO-F will conduct an all-sky survey like the IRAS survey with several tens of times higher sensitivity and several times better spatial resolution. In the near- and mid-infrared, wide area sky-surveys will be conducted over pre-selected portions of the sky in 13 bands ranging from 2-200microns. In addition to these photometric surveys, low-resolution spectroscopic capabilities are available for all wavelength bands. The ASTRO-F mission will produce a fundamental database for the next generation of advanced observatories, for example Herschel, and JWST, and will complement the SIRTF mission by virtue of its wide sky coverage.


2018 ◽  
Author(s):  
◽  
Marat Musin

In this dissertation, I aim to study the evolution of galaxies over the last 6 Gyr by measuring the growth of the global stellar mass density (GSMD) since z = 0.8. My work combines the datasets from two very large surveys, namely, the optical data from the Sloan Digital Sky Survey (SDSS) Stripe 82 and the infrared data from the Wide-field Infrared Survey Explorer (WISE), and constructs a unique catalog of galaxies that have their spectral energy distributions (SEDs) measured consistently from 0.3 to 5 [mu]m in seven bands. This catalog, the largest of its kind, contains 9 million galaxies in [about] 300 deg[2] , will have a wide range of applications beyond the scope of this thesis. Extending galaxy SED measurements to restframe near-IR has two significant advantages: (1) dust extinction can be better handled, and (2) emissions from low-mass stars, which are the major contributors to a galaxy's stellar mass, can be better measured. WISE was the only mission to date that provided all-sky IR data that are deep enough for galaxy evolution studies out to z [approximately] 1 (sampling restframe K-band). The only wide-field optical survey data that could match WISE depths are those from the SDSS Stripe 82 over [about] 300 deg2 . The synergy of the two is therefore natural. The implementation, however, is of tremendous difficulty. This is mainly because of the vastly different spatial resolutions between SDSS and WISE. To overcome this problem, we take an approach that is often referred to as "morphological template fitting", i.e., using the high-resolution image to define the morphological template of the galaxy in question, and de-convolving its light profile in the low-resolution image accordingly. In this way, we obtain the SED measurements over the entire 0.3-5[mu]m range in the most self-consistent manner. Using this SED catalog as the basis, we derive photometric redshifts and stellar masses for all the 9 million galaxies that span z = 0-0.8. This provides us an unprecedented statistics when deriving galaxy stellar mass functions (MFs) and GSMD over multiple redshift bins. Some preliminary results are discussed. As a by-product of our morphological template fitting process, an interesting population of objects called "WISE Optical Dropouts" ("WoDrops" for short) are discovered. These objects are significant detections in WISE data but are invisible in all the SDSS Stripe 82 data. Their nature remains a mystery up to this point. Among all possibilities, the only viable interpretation is that they are very high-mass galaxies with very high dust extinctions. To reveal their nature, future observations at larger facilities will be necessary.


2014 ◽  
Vol 441 (1) ◽  
pp. 715-725 ◽  
Author(s):  
Tatyana Gavrilchenko ◽  
Christopher R. Klein ◽  
Joshua S. Bloom ◽  
Joseph W. Richards

2013 ◽  
Vol 9 (S304) ◽  
pp. 209-212
Author(s):  
S. Mateos

AbstractWe present a highly reliable and efficient mid-infrared colour-based selection technique for luminous active galactic nuclei (AGN) using the Wide-field Infrared Survey Explorer (WISE) survey. Our technique is designed to identify objects with red mid-infrared power-law spectral energy distributions. We studied the dependency of our mid-infrared selection on the AGN intrinsic luminosity and the effectiveness of our technique to uncover obscured AGN missed in X-ray surveys. To do so we used two samples of luminous AGN independently selected in hard X-ray and optical surveys. We used the largest catalogue of 887 [OIII] λ5007-selected type 2 quasars (QSO2s) at z≲0.83 in the literature from the Sloan Digital Sky Survey (SDSS), and the 258 hard (>4.5 keV) X-ray-selected AGN from the Bright Ultrahard XMM-Newton Survey (BUXS). The effectiveness of our mid-infrared selection technique increases with the AGN luminosity. At high luminosities and at least up to z~1 our technique is very effective at identifying both Compton-thin and Compton-thick AGN.


2021 ◽  
Vol 502 (3) ◽  
pp. 4026-4038
Author(s):  
Brittany J Fuzia ◽  
Lalitwadee Kawinwanichakij ◽  
Nicola Mehrtens ◽  
Simone Aiola ◽  
Nicholas Battaglia ◽  
...  

ABSTRACT We examine the stacked thermal Sunyaev–Zel’dovich (SZ) signals for a sample of galaxy group and cluster candidates from the 24 deg2 infrared Spitzer-HETDEX Exploratory Large Area (SHELA) survey. We identify the objects in combination with optical data using the redMaPPer algorithm, and divide them into three richness bins (λ in 10–20, 20–30, and 30–76 with average photometric redshifts of 0.80, 0.73, and 0.70, respectively). All richness bins show evidence for dust emission, which we fit using stacked profiles from Herschel Stripe 82 data. We fit for synchrotron emission using stacked profiles created by binning source fluxes from NRAO VLA Sky Survey data. We can confidently detect the SZ decrement only in the highest richness bin, finding MSZ,500  = $8.7^{+1.7}_{-1.3} \times 10^{13}\, \mathrm{ M}_\odot$. Neglecting the correction for dust and synchrotron depresses the inferred mass by 26 per cent, indicating a partial fill-in of the SZ decrement from dust and synchrotron emission. We compare our corrected SZ masses to two redMaPPer mass–richness scaling relations and find that the SZ mass is lower than predicted by the richness. For the lower richness bins, mass bias factors as low as 1 − b = 0.6 are not enough to bring the mass limits into agreement. We discuss possible explanations for this discrepancy. The SHELA richnesses may differ from previous richness measurements due to the inclusion of infrared data in redMaPPer. To connect the SZ signal to the mass, we use a universal gas pressure profile that is calibrated to massive clusters at low redshift. It may not be applicable to our lower mass, higher redshift sample.


2021 ◽  
Vol 163 (1) ◽  
pp. 24
Author(s):  
K. L. Luhman

Abstract I have used high-precision photometry and astrometry from the early installment of the third data release of Gaia (EDR3) to perform a survey for members of the stellar populations within the Sco-Cen complex, which consist of Upper Sco, UCL/LCC, the V1062 Sco group, Ophiuchus, and Lupus. Among Gaia sources with σ π < 1 mas, I have identified 10,509 candidate members of those populations. I have compiled previous measurements of spectral types, Li equivalent widths, and radial velocities for the candidates, which are available for 3169, 1420, and 1740 objects, respectively. In a subset of candidates selected to minimize field star contamination, I estimate that the contamination is ≲1% and the completeness is ∼90% at spectral types of ≲M6–M7 for the populations with low extinction (Upper Sco, V1062 Sco, UCL/LCC). I have used that cleaner sample to characterize the stellar populations in Sco-Cen in terms of their initial mass functions, ages, and space velocities. For instance, all of the populations in Sco-Cen have histograms of spectral types that peak near M4–M5, which indicates that they share similar characteristic masses for their initial mass functions (∼0.15–0.2 M ⊙). After accounting for incompleteness, I estimate that the Sco-Cen complex contains nearly 10,000 members with masses above ∼0.01 M ⊙. Finally, I also present new estimates for the intrinsic colors of young stars and brown dwarfs (≲20 Myr) in bands from Gaia EDR3, the Two Micron All Sky Survey, the Wide-field Infrared Survey Explorer, and the Spitzer Space Telescope.


Sign in / Sign up

Export Citation Format

Share Document