scholarly journals Extreme HBL behavior of Markarian 501 during 2012

2018 ◽  
Vol 620 ◽  
pp. A181 ◽  
Author(s):  
M. L. Ahnen ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
C. Arcaro ◽  
A. Babić ◽  
...  

Aims. We aim to characterize the multiwavelength emission from Markarian 501 (Mrk 501), quantify the energy-dependent variability, study the potential multiband correlations, and describe the temporal evolution of the broadband emission within leptonic theoretical scenarios. Methods. We organized a multiwavelength campaign to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Results. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of ∼0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was ∼3 CU, and the peak of the high-energy spectral component was found to be at ∼2 TeV. Both the X-ray and VHE gamma-ray spectral slopes were measured to be extremely hard, with spectral indices < 2 during most of the observing campaign, regardless of the X-ray and VHE flux. This study reports the hardest Mrk 501 VHE spectra measured to date. The fractional variability was found to increase with energy, with the highest variability occurring at VHE. Using the complete data set, we found correlation between the X-ray and VHE bands; however, if the June 9 flare is excluded, the correlation disappears (significance < 3σ) despite the existence of substantial variability in the X-ray and VHE bands throughout the campaign. Conclusions. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency-peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The data set acquired shows that the broadband spectral energy distribution (SED) of Mrk 501, and its transient evolution, is very complex, requiring, within the framework of synchrotron self-Compton (SSC) models, various emission regions for a satisfactory description. Nevertheless the one-zone SSC scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behavior seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays.

2010 ◽  
Vol 27 (4) ◽  
pp. 431-438 ◽  
Author(s):  
H. Steinle

AbstractCen A, at a distance of less than 4 Mpc, is the nearest radio-loud AGN. Its emission is detected from radio to very-high energy gamma-rays. Despite the fact that Cen A is one of the best studied extragalactic objects the origin of its hard X-ray and soft gamma-ray emission (100 keV <E< 50 MeV) is still uncertain. Observations with high spatial resolution in the adjacent soft X-ray and hard gamma-ray regimes suggest that several distinct components such as a Seyfert-like nucleus, relativistic jets, and even luminous X-ray binaries within Cen A may contribute to the total emission in the MeV regime that has been detected with low spatial resolution. As the Spectral Energy Distribution of Cen A has its second maximum around 1 MeV, this energy range plays an important role in modeling the emission of (this) AGN. As there will be no satellite mission in the near future that will cover this energies with higher spatial resolution and better sensitivity, an overview of all existing hard X-ray and soft gamma-ray measurements of Cen A is presented here defining the present knowledge on Cen A in the MeV energy range.


2019 ◽  
Vol 486 (2) ◽  
pp. 1741-1762 ◽  
Author(s):  
L Foffano ◽  
E Prandini ◽  
A Franceschini ◽  
S Paiano

ABSTRACT Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. The non-thermal emission of the relativistic jet peaks in the spectral energy distribution (SED) plot with the synchrotron emission in X-rays and with the gamma-ray emission in the TeV range or above. These high photon energies may represent a challenge for the standard modelling of these sources. They are important for the implications on the indirect measurements of the extragalactic background light, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. In this paper, we perform a comparative study of the multiwavelength spectra of 32 EHBL objects detected by the Swift-BAT telescope in the hard X-ray band and by the Fermi-LAT telescope in the high-energy gamma-ray band. The source sample presents uniform spectral properties in the broad-band SEDs, except for the TeV gamma-ray band where an interesting bimodality seems to emerge. This suggests that the EHBL class is not homogeneous, and a possible subclassification of the EHBLs may be unveiled. Furthermore, in order to increase the number of EHBLs and settle their statistics, we discuss the potential detectability of the 14 currently TeV gamma-ray undetected sources in our sample by the Cherenkov telescopes.


Author(s):  
L. Barchiesi ◽  
F. Pozzi ◽  
C. Vignali ◽  
F. J. Carrera ◽  
F. Vito ◽  
...  

Abstract In the black hole (BH)–galaxy co-evolution framework, most of the star formation (SF) and the BH accretion are expected to take place in highly obscured conditions. The large amount of gas and dust absorbs most of the UV-to-soft-X radiation and re-emits it at longer wavelengths, mostly in the IR. Thus, obscured active galactic nuclei (AGN) are very difficult to identify in optical or X-ray bands but shine bright in the IR. Moreover, X-ray background (XRB) synthesis models predict that a large fraction of the yet-unresolved XRB is due to the most obscured (Compton thick, CT: N $_{\text{H}}\ge 10^{24} \,\mathrm{cm}^{-2}$ ) of these AGN. In this work, we investigate the synergies between putative IR missions [using SPace Infrared telescope for Cosmology and Astrophysics (SPICA), proposed for European Space Agency (ESA)/M5 but withdrawn in 2020 October, and Origins Space Telescope, OST, as ‘templates’] and the X-ray mission Athena (Advanced Telescope for High ENergy Astrophysics), which should fly in early 2030s, in detecting and characterising AGN, with a particular focus on the most obscured ones. Using an XRB synthesis model, we estimated the number of AGN and the number of those which will be detected in the X-rays by Athena. For each AGN, we associated an optical-to-Far InfraRed (FIR) spectral energy distribution (SED) from observed AGN with both X-ray data and SED decomposition and used these SEDs to check if the AGN will be detected by SPICA-like or OST at IR wavelengths. We expect that, with the deepest Athena and SPICA-like (or OST) surveys, we will be able to photometrically detect in the IR more than 90% of all the AGN (down to $L_{2-10\text{keV}} \sim 10^{42}\,\mathrm{erg\ s}^{-1}$ and up to $z \sim 10$ ) predicted by XRB synthesis modeling, and we will detect at least half of them in the X-rays. The spectroscopic capabilities of the OST can provide ${\approx}51\,000$ and ${\approx}3\,400$ AGN spectra with $R= 300$ at 25–588 $\unicode[Times]{x03BC}$ m in the wide and deep surveys, respectively, the last one up to $z\approx 4$ . Athena will be extremely powerful in detecting and discerning moderate- and high-luminosity AGN, allowing us to properly select AGN even when the mid-IR torus emission is ‘hidden’ by the host galaxy contribution. We will constrain the intrinsic luminosity and the amount of obscuration for $\sim\!20\%$ of all the AGN (and $\sim\!50\%$ of those with $L_{2-10\text{keV}} > 3.2 \times 10^{43}\,\mathrm{erg\ s}^{-1}$ ) using the X-ray spectra provided by Athena WFI. We find that the most obscured and elusive CT-AGN will be exquisitely sampled by SPICA-like mission or OST and that Athena will allow a fine characterisation of the most luminous ones. This will provide a significant step forward in the process of placing stronger constraints on the yet-unresolved XRB and investigating the BH accretion rate evolution up to very high redshift ( $z \ge 4$ ).


2019 ◽  
Vol 627 ◽  
pp. A72 ◽  
Author(s):  
G. Ghisellini ◽  
M. Perri ◽  
L. Costamante ◽  
G. Tagliaferri ◽  
T. Sbarrato ◽  
...  

We observed three blazars at z >  2 with the NuSTAR satellite. These were detected in the γ-rays by Fermi/LAT and in the soft X-rays, but have not yet been observed above 10 keV. The flux and slope of their X-ray continuum, together with Fermi/LAT data allows us to estimate their total electromagnetic output and peak frequency. For some of them we were able to study the source in different states, and investigate the main cause of the different observed spectral energy distribution. We then collected all blazars at redshifts greater than 2 observed by NuSTAR, and confirm that these hard and luminous X-ray blazars are among the most powerful persistent sources in the Universe. We confirm the relation between the jet power and the disk luminosity, extending it at the high-energy end.


Author(s):  
Wen-Jing Fu ◽  
Hai-Ming Zhang ◽  
Jin Zhang ◽  
Yun-Feng Liang ◽  
Su Yao ◽  
...  

Abstract With the possible spacial association to the Fermi/LAT source 3FGL J1330.0--3818, TOL 1326--379 may be the first one that is identified as a $\gamma$-ray emitting Fanaroff--Riley type 0 radio galaxy (FR0 RG). We analyze the $\sim$12 yr Fermi/LAT observation data of this $\gamma$-ray source and examine its association to TOL 1326--379. We show that the $\gamma$-ray source (named as J1331.0--3818) is tentatively detected with a TS value of 28.7, 3FGL J1330.0--3818 is out of the 95\% containment of J1331.0--3818, and their positions are spatially separated with 0.2$\degr$. 4FGL J1331.3--3818 falls into the 68\% containment of J1331.0--3818, suggesting that our result agrees with that reported in the Fourth Fermi LAT Source Catalog. TOL 1326--379 is out of the 95\% containment of J1331.0--3818, and their positions are spatially separated with 0.4$\degr$, indicating that the association between J1331.0--3818 and TOL 1326--379 is quite ambiguous. However, we do not find other possible potential radio and X-ray counterparts within the circle centered at J1331.0--3818 with a radius of 0.4$\degr$. The spectral energy distribution (SED) of TOL 1326--379 shows a bimodal feature as seen in the $\gamma$-ray emitting RGs. We fit the SED with the one-zone leptonic model and find that the average energy spectrum of J1331.0--3818 agrees with the model prediction. Assuming that J1331.0--3818 is an unidentified $\gamma$-ray source, we derive the upper-limit of the $\gamma$-ray flux for TOL 1326--379. It is not tight enough to exclude this possibility. Based on these analysis results, we cautiously argue that the $\gamma$-ray source J1331.0--3818 is associated with TOL 1326--379 and its jet radiation physic is similar to those $\gamma$-ray emitting RGs.


2020 ◽  
Vol 500 (2) ◽  
pp. 2112-2126
Author(s):  
D Kantzas ◽  
S Markoff ◽  
T Beuchert ◽  
M Lucchini ◽  
A Chhotray ◽  
...  

ABSTRACT Cygnus X–1 is the first Galactic source confirmed to host an accreting black hole. It has been detected across the entire electromagnetic spectrum from radio to GeV gamma-rays. The source’s radio through mid-infrared radiation is thought to originate from the relativistic jets. The observed high degree of linear polarization in the MeV X-rays suggests that the relativistic jets dominate in this regime as well, whereas a hot accretion flow dominates the soft X-ray band. The origin of the GeV non-thermal emission is still debated, with both leptonic and hadronic scenarios deemed to be viable. In this work, we present results from a new semi-analytical, multizone jet model applied to the broad-band spectral energy distribution of Cygnus X–1 for both leptonic and hadronic scenarios. We try to break this degeneracy by fitting the first-ever high-quality, simultaneous multiwavelength data set obtained from the CHOCBOX campaign (Cygnus X–1 Hard state Observations of a Complete Binary Orbit in X-rays). Our model parametrizes dynamical properties, such as the jet velocity profile, the magnetic field, and the energy density. Moreover, the model combines these dynamical properties with a self-consistent radiative transfer calculation including secondary cascades, both of leptonic and hadronic origin. We conclude that sensitive TeV gamma-ray telescopes like Cherenkov Telescope Array (CTA) will definitively answer the question of whether hadronic processes occur inside the relativistic jets of Cygnus X–1.


2019 ◽  
Vol 491 (2) ◽  
pp. 2771-2778 ◽  
Author(s):  
L Costamante

ABSTRACT BL Lac objects can be extreme in two ways: with their synchrotron emission, peaking beyond 1 keV in their spectral energy distribution, or with their gamma-ray emission, peaking at multi-TeV energies up to and beyond 10–20 TeV, like 1ES 0229+200. This second type of extreme BL Lacs – which we can name TeV-peaked BL Lacs – is not well explained by the usual synchrotron self-Compton scenarios for BL Lacs. These sources are also important as probes for the intergalactic diffuse infrared background and cosmic magnetic fields, as well as possible sites of production of ultra-high-energy cosmic rays and neutrinos. However, all these studies are hindered by their still very limited number. Here I propose a new, simple criterium to select the best candidates for TeV observations, specifically aimed at this peculiar type of BL Lac objects by combining X-ray, gamma-ray, and infrared data. It is based on the observation of a clustering towards a high X-ray to GeV gamma-ray flux ratio, and it does not rely on the radio flux or X-ray spectrum. This makes it suitable to find TeV-peaked sources also with very faint radio emission. Taking advantage of the Fermi all-sky gamma-ray survey applied to the ROMA-BZCAT and Sedentary Survey samples, I produce an initial list of 47 TeV-peaked candidates for observations with present and future air-Cherenkov telescopes.


2019 ◽  
Vol 15 (S356) ◽  
pp. 326-328
Author(s):  
Jean Damascène Mbarubucyeye ◽  
Felicia Krauß ◽  
Pheneas Nkundabakura

AbstractStudying unidentified γ-ray sources is important as they may hide new discoveries. We conducted a multiwavelength analysis of 13 unidentified Fermi-LAT sources in the 3FGL catalogue that have no known counterparts (Unidentified Gamma-ray Sources, UnIDs). The sample was selected for sources that have a single radio and X-ray candidate counterpart in their uncertainty ellipses. The purpose of this study is to find a possible blazar signature and to model the Spectral Energy Distribution (SED) of the selected sources using an empirical log parabolic model. The results show that the synchrotron emission of all sources peaks in the infrared (IR) band and that the high-energy emission peaks in MeV to GeV bands. The SEDs of sources in our sample are all blazar like. In addition, the peak position of the sample reveals that 6 sources (46.2%) are Low Synchrotron Peaked (LSP) blazars, 4 (30.8%) of them are High Synchrotron Peaked (HSP) blazars, while 3 of them (23.0%) are Intermediate Synchrotron Peaked (ISP) blazars.


2019 ◽  
Vol 492 (3) ◽  
pp. 3728-3741
Author(s):  
Barbara Balmaverde ◽  
A Caccianiga ◽  
R Della Ceca ◽  
A Wolter ◽  
A Belfiore ◽  
...  

ABSTRACT The REX (Radio-Emitting X-ray sources) is a catalogue produced by cross-matching X-ray data from the ROSAT-PSPC archive of pointed observations and radio data from the NRAO VLA Sky Survey, aimed at the selection of blazars. From the REX catalogue, we select a well-defined and statistically complete sample of high-energy peaked BL Lac (HBL). HBL are expected to be the most numerous class of extragalactic TeV-emitting sources. Specifically, we have considered only the REX sources in the currently planned CTA extragalactic survey area satisfying specific criteria and with an optical spectroscopic confirmation. We obtain 46 HBL candidates that we called Te-REX (TeV-emitting REX). We estimate the very high-energy gamma-ray emission, in the TeV domain, using an empirical approach i.e. using specific statistical relations between gamma-rays (at GeV energies) and radio/X-rays properties observed in bright HBL from the literature. We compare the spectral energy distributions (SEDs) with the sensitivities of current and upcoming Cherenkov telescopes and we predict that 14 Te-REX could be detectable with 50 h of observations of CTA and 7 of them also with current Cherenkov facilities in 50 h. By extrapolating these numbers on the total extragalactic sky, we predict that about 800 HBL could be visible in pointed CTA observations and ∼400 with current Cherenkov telescopes in 50 h. Interestingly, our predictions show that a non-negligible fraction (∼30 per cent) of the HBL that will be detectable by CTA is composed of relatively weak objects whose optical nuclear emission is swamped by the host-galaxy light and not (yet) detected by Fermi-LAT.


1999 ◽  
Vol 193 ◽  
pp. 592-593 ◽  
Author(s):  
Miguel Cerviño ◽  
J. Miguel Mas-Hesse

We present in this contribution the predictions on the multiwavelength spectral energy distribution of our evolutionary population synthesis models including single and binary stellar systems. The high energy computations include the emission associated to X-ray binaries and supernovae remnants, as well as the mechanical energy released into the interstellar medium, which can be partially reprocessed into thermal X-rays. With these components we compute the spectral energy distribution of starburst galaxies from X-ray to radio ranges, and analyze finally the effects of the high energy emission on the H and He ionizing continuum.


Sign in / Sign up

Export Citation Format

Share Document