scholarly journals Multiwavelength study of potential blazar candidates among Fermi-LAT unidentified gamma-ray sources

2019 ◽  
Vol 15 (S356) ◽  
pp. 326-328
Author(s):  
Jean Damascène Mbarubucyeye ◽  
Felicia Krauß ◽  
Pheneas Nkundabakura

AbstractStudying unidentified γ-ray sources is important as they may hide new discoveries. We conducted a multiwavelength analysis of 13 unidentified Fermi-LAT sources in the 3FGL catalogue that have no known counterparts (Unidentified Gamma-ray Sources, UnIDs). The sample was selected for sources that have a single radio and X-ray candidate counterpart in their uncertainty ellipses. The purpose of this study is to find a possible blazar signature and to model the Spectral Energy Distribution (SED) of the selected sources using an empirical log parabolic model. The results show that the synchrotron emission of all sources peaks in the infrared (IR) band and that the high-energy emission peaks in MeV to GeV bands. The SEDs of sources in our sample are all blazar like. In addition, the peak position of the sample reveals that 6 sources (46.2%) are Low Synchrotron Peaked (LSP) blazars, 4 (30.8%) of them are High Synchrotron Peaked (HSP) blazars, while 3 of them (23.0%) are Intermediate Synchrotron Peaked (ISP) blazars.

2014 ◽  
Vol 10 (S313) ◽  
pp. 225-230
Author(s):  
Giulia Migliori

AbstractWe present a multiwavelength study of the core and relativistic jet of the radio loud (RL) quasar RGB J1512+020A (z=0.20). We report the discovery of a bright, 13” extended X-ray jet with a short Chandra observation. We discuss the origin of the jet X-ray emission and its properties in comparison with sample of X-ray quasar jets. The broadband core spectrum is contributed by the emission of the central quasar, by a blazar component, responsible for the γ-ray emission detected by Fermi, and by the host galaxy. We model the non-thermal blazar spectral energy distribution (SED) and constrain the total jet power. The jet power inferred from the blazar SED modeling is in agreement with the values obtained from the total radio power, pointing to a jet that efficiently carries its power up to kiloparsec scales. The quasar emission appears intrinsically weak in the optical-UV band. The disk luminosity estimated from the broad emission lines is lower than the jet power, in agreement with recent results from observations and theory.


2010 ◽  
Vol 27 (4) ◽  
pp. 431-438 ◽  
Author(s):  
H. Steinle

AbstractCen A, at a distance of less than 4 Mpc, is the nearest radio-loud AGN. Its emission is detected from radio to very-high energy gamma-rays. Despite the fact that Cen A is one of the best studied extragalactic objects the origin of its hard X-ray and soft gamma-ray emission (100 keV <E< 50 MeV) is still uncertain. Observations with high spatial resolution in the adjacent soft X-ray and hard gamma-ray regimes suggest that several distinct components such as a Seyfert-like nucleus, relativistic jets, and even luminous X-ray binaries within Cen A may contribute to the total emission in the MeV regime that has been detected with low spatial resolution. As the Spectral Energy Distribution of Cen A has its second maximum around 1 MeV, this energy range plays an important role in modeling the emission of (this) AGN. As there will be no satellite mission in the near future that will cover this energies with higher spatial resolution and better sensitivity, an overview of all existing hard X-ray and soft gamma-ray measurements of Cen A is presented here defining the present knowledge on Cen A in the MeV energy range.


2018 ◽  
Vol 168 ◽  
pp. 04013
Author(s):  
Hongjun An

We present our studies of intrabinary shock emission for astrophysical binary systems with a neutron star. We construct a model for the shock emission and compare the model calculation with the light curve and the spectral energy distribution of the gamma-ray binary 1FGL J1018.6-5856. The model assumes a slow and a fast population of particles accelerated in the shock, and computes the high-energy emission spectra and orbital light curves produced by synchrotron, self-Compton and external Compton processes of the high-energy particles in the shock. The model allows one to study plasma properties and to constrain the binary geometry, most importantly the inclination angle (i). We discuss potential use of this model for other pulsar binaries to determine the inclination angle of the binary hence the mass of the neutron star.


2019 ◽  
Vol 486 (2) ◽  
pp. 1741-1762 ◽  
Author(s):  
L Foffano ◽  
E Prandini ◽  
A Franceschini ◽  
S Paiano

ABSTRACT Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. The non-thermal emission of the relativistic jet peaks in the spectral energy distribution (SED) plot with the synchrotron emission in X-rays and with the gamma-ray emission in the TeV range or above. These high photon energies may represent a challenge for the standard modelling of these sources. They are important for the implications on the indirect measurements of the extragalactic background light, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. In this paper, we perform a comparative study of the multiwavelength spectra of 32 EHBL objects detected by the Swift-BAT telescope in the hard X-ray band and by the Fermi-LAT telescope in the high-energy gamma-ray band. The source sample presents uniform spectral properties in the broad-band SEDs, except for the TeV gamma-ray band where an interesting bimodality seems to emerge. This suggests that the EHBL class is not homogeneous, and a possible subclassification of the EHBLs may be unveiled. Furthermore, in order to increase the number of EHBLs and settle their statistics, we discuss the potential detectability of the 14 currently TeV gamma-ray undetected sources in our sample by the Cherenkov telescopes.


2019 ◽  
Vol 491 (2) ◽  
pp. 2771-2778 ◽  
Author(s):  
L Costamante

ABSTRACT BL Lac objects can be extreme in two ways: with their synchrotron emission, peaking beyond 1 keV in their spectral energy distribution, or with their gamma-ray emission, peaking at multi-TeV energies up to and beyond 10–20 TeV, like 1ES 0229+200. This second type of extreme BL Lacs – which we can name TeV-peaked BL Lacs – is not well explained by the usual synchrotron self-Compton scenarios for BL Lacs. These sources are also important as probes for the intergalactic diffuse infrared background and cosmic magnetic fields, as well as possible sites of production of ultra-high-energy cosmic rays and neutrinos. However, all these studies are hindered by their still very limited number. Here I propose a new, simple criterium to select the best candidates for TeV observations, specifically aimed at this peculiar type of BL Lac objects by combining X-ray, gamma-ray, and infrared data. It is based on the observation of a clustering towards a high X-ray to GeV gamma-ray flux ratio, and it does not rely on the radio flux or X-ray spectrum. This makes it suitable to find TeV-peaked sources also with very faint radio emission. Taking advantage of the Fermi all-sky gamma-ray survey applied to the ROMA-BZCAT and Sedentary Survey samples, I produce an initial list of 47 TeV-peaked candidates for observations with present and future air-Cherenkov telescopes.


2018 ◽  
Vol 616 ◽  
pp. A65 ◽  
Author(s):  
G. Piano ◽  
P. Munar-Adrover ◽  
L. Pacciani ◽  
P. Romano ◽  
S. Vercellone ◽  
...  

Context. Flat spectrum radio quasars (FSRQs) can suffer strong absorption above E = 25∕(1 + z) GeV, due to gamma–gamma interaction if the emitting region is at sub-parsec scale from the super-massive black hole (SMBH). Aims. Gamma-ray flares from these astrophysical sources can be used to investigate the location of the high-energy emission region and the physics of the radiating processes. Methods. We present an episode of remarkable gamma-ray flaring activity from FSRQ PKS 2023-07 during April 2016, as detected by both the AGILE and Fermi satellites. An intensive multiwavelength campaign, triggered by Swift, covered the entire duration of the flaring activity, including the peak gamma-ray activity. Results. We report the results of multiwavelength observations of the blazar. We found that during the peak emission, the most energetic photon had an energy of 44 GeV, putting strong constraints on the opacity of the gamma-ray dissipation region. The overall spectral energy distribution (SED) is interpreted in terms of leptonic models for blazar jets, with the emission site located beyond the broad line region (BLR).


2003 ◽  
Vol 12 (05) ◽  
pp. 781-789 ◽  
Author(s):  
G. Z. XIE ◽  
S. X. DING ◽  
H. DAI ◽  
E. W. LIANG ◽  
H. T. LIU

In this paper, we introduce a new composite spectral indices αγxγ = αxγ - αγ, and prove [Formula: see text], that means αγxγ is intrinsic. We plot a αxox - αγxγ diagram for 25 Gev γ-ray blazars for which αx and αγ have been provided in the literature, where αxox = αox - αx which was introduced by Sambruna et al. (1996) and proved that it is intrinsic by our previous paper (Xie et al. 2001). Using this new composite color–color (αxox - αγxγ) diagram, we investigated the nature of the HBLs–LBLs relationship, and the BL Lacs–FSRQs relationship, in high-energy emission. The results show that the spectral energy distributions of three subclasses of Gev γ-ray loud blazars are different, but essentially continuous: HBLs and FSRQs occupy separated regions while LBLs bridge the gap between HBLs and FSRQs. The results are consistent with that derived from a low energy color–color(αxox - αoro) diagram by Sambruna et al. (1996) and Xie et al. (2001). However, on the αox - αxγ diagram, FSRQs, LBLs and HBLs occupy same region. Because both αγxγ and αxox are intrinsic, thus, the new connection among HBLs, LBLs and FSRQs obtained by us is intrinsic.


1999 ◽  
Vol 193 ◽  
pp. 592-593 ◽  
Author(s):  
Miguel Cerviño ◽  
J. Miguel Mas-Hesse

We present in this contribution the predictions on the multiwavelength spectral energy distribution of our evolutionary population synthesis models including single and binary stellar systems. The high energy computations include the emission associated to X-ray binaries and supernovae remnants, as well as the mechanical energy released into the interstellar medium, which can be partially reprocessed into thermal X-rays. With these components we compute the spectral energy distribution of starburst galaxies from X-ray to radio ranges, and analyze finally the effects of the high energy emission on the H and He ionizing continuum.


2014 ◽  
Vol 28 ◽  
pp. 1460179
Author(s):  
BIDZINA KAPANADZE ◽  
SERGO KAPANADZE ◽  
MANANA VARDOSANIDZE

The high energy peaked BL Lacertae object PKS 2155-304 has been observed 106-times by the X-ray Telescope onboard the Swift satellite through the 0.3-10 keV band since 2005 November 17. Among these observations, we have revealed 19 cases of the intraday flux variability at 99.9% confidence level with fractional rms amplitudes up to 30% and timescales ranging from 40 ks down to 0.4 ks. Flux changes were often accompanied by a spectral variability which showed a complex character in the presence of both clockwise and counter-clockwise evolution in a hardness ratio-flux plane. These events show rather curved spectra fitted well with the log-parabolic model. The curvature parameter ranged from 0.13 to 0.73 and showed different values for the spectra corresponding to the separate orbits of a single observation. The peak of spectral energy distribution ranged between 1.76 keV and 2.67 keV and generally was variable during the intraday flux changes. The soft and hard X-ray fluxes showed a strong correlation to each other. No correlation between the occurrence of intraday variations and source brightness state was seen — they are found as in flaring as well for intermediate and low states. The X-ray microvariability in PKS 2155-304 can be explained both with the shock-in-jet scenario and emergence of a "blob" of very energetic particles in the jet base.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012013
Author(s):  
A Eungwanichayapant ◽  
W Luangtip

Abstract Interactions between Very High Energy (VHE) gamma-rays from Active Galactic Nuclei (AGNs) and infrared photons from the Extragalactic Background Light (EBL) can start electromagnetic cascades. If the extragalactic magnetic field near a host galaxy is strong enough (∼1 µG), the cascades would develop isotropically around the AGN. As a result, the electron/positron pairs created along the development of the cascades would create an X-ray halo via synchrotron radiation process. It is believed that the VHE gamma-ray spectra from the AGNs could be approximated by a power-law model which is truncated at high energy end (i.e. maximum energy). In this work we studied the X-ray Spectral Energy Distribution (SED) of the halo generated from the AGN spectra with different power indices and maximum energy levels. The results showed that the SEDs were slightly higher and broader, as they were obtaining higher flux if the power indices were lower. On the other hand, the SEDs were sensitive to the maximum energy levels between 100-300 TeV. More flux could be obtained from the higher maximum energy. However, we found that the SED becomes insensitive to the varied parameters when the maximum energy and the power index are > 500 TeV and < 1.5, respectively.


Sign in / Sign up

Export Citation Format

Share Document