scholarly journals 30-micron sources in galaxies with different metallicities

2019 ◽  
Vol 626 ◽  
pp. A92 ◽  
Author(s):  
M. Gładkowski ◽  
R. Szczerba ◽  
G. C. Sloan ◽  
E. Lagadec ◽  
K. Volk

Aims. We present an analysis and comparison of the 30 μm dust features seen in the Spitzer Space Telescope spectra of 207 carbon-rich asymptotic giant branch (AGB) stars, post-AGB objects, and planetary nebulae (PNe) located in the Milky Way, the Magellanic Clouds (MCs), or the Sagittarius dwarf spheroidal galaxy (Sgr dSph), which are characterised by different average metallicities. We investigated whether the formation of the 30 μm feature carrier may be a function of the metallicity. Through this study we expect to better understand the late stages of stellar evolution of carbon-rich stars in these galaxies. Methods. Our analysis uses the “Manchester method” as a basis for estimating the temperature of dust for the carbon-rich AGB stars and the PNe in our sample. For post-AGB objects we changed the wavelength ranges used for temperature estimation, because of the presence of the 21 μm feature on the short wavelength edge of the 30 μm feature. We used a black-body function with a single temperature deduced from the Manchester method or its modification to approximate the continuum under the 30 μm feature. Results. We find that the strength of the 30 μm feature increases until dust temperature drops below 400 K. Below this temperature, the large loss of mass and probably the self-absorption effect reduces the strength of the feature. During the post-AGB phase, when the intense mass-loss has terminated, the optical depth of the circumstellar envelope is smaller, and the 30 μm feature becomes visible again, showing variety of values for post-AGB objects and PNe, and being comparable with the strengths of AGB stars. In addition, the AGB stars and post-AGB objects show similar values of central wavelengths – usually between 28.5 and 29.5 μm. However, in case of PNe the shift of the central wavelength towards longer wavelengths is visible. The normalised median profiles for AGB stars look uniformly for various ranges of dust temperature, and different galaxies. We analysed the profiles of post-AGB objects and PNe only within one dust temperature range (below 200 K), and they were also similar in different galaxies. In the spectra of 17 PNe and five post-AGB objects we found the broad 16–24 μm feature. Two objects among the PNe group are the new detections: SMP LMC 51, and SMP LMC 79, whereas in the case of post-AGBs the new detections are: IRAS 05370-7019, IRAS 05537-7015, and IRAS 21546+4721. In addition, in the spectra of nine PNe we found the new detections of 16–18 μm feature. We also find that the Galactic post-AGB object IRAS 11339-6004 has a 21 μm emission. Finally, we have produced online catalogues of photometric data and Spitzer IRS spectra for all objects that show the 30 μm feature. These resources are available online for use by the community. Conclusions. The most important conclusion of our work is the fact that the formation of the 30 μm feature is affected by metallicity. Specifically that, as opposed to more metal-poor samples of AGB stars in the MCs, the feature is seen at lower mass-loss rates, higher temperatures, and has seen to be more prominent in Galactic carbon stars. The averaged feature (profile) in the AGB, post-AGB objects, and PNe seems unaffected by metallicity at least between a fifth and solar metallicity, but in the case of PNe it is shifted to significantly longer wavelengths.

1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2021 ◽  
Vol 654 ◽  
pp. A18
Author(s):  
W. H. T. Vlemmings ◽  
T. Khouri ◽  
D. Tafoya

Context. Observation of CO emission around asymptotic giant branch (AGB) stars is the primary method to determine gas mass-loss rates. While radiative transfer models have shown that molecular levels of CO can become mildly inverted, causing maser emission, CO maser emission has yet to be confirmed observationally. Aims. High-resolution observations of the CO emission around AGB stars now have the brightness temperature sensitivity to detect possible weak CO maser emission. Methods. We used high angular resolution observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the small-scale structure of CO J = 3−2 emission around the oxygen-rich AGB star W Hya. Results. We find CO maser emission amplifying the stellar continuum with an optical depth τ ≈−0.55. The maser predominantly amplifies the limb of the star because CO J = 3−2 absorption from the extended stellar atmosphere is strongest towards the centre of the star. Conclusions. The CO maser velocity corresponds to a previously observed variable component of high-frequency H2O masers and with the OH maser that was identified as the amplified stellar image. This implies that the maser originates beyond the acceleration region and constrains the velocity profile since we find the population inversion primarily in the inner circumstellar envelope. We find that inversion can be explained by the radiation field at 4.6 μm and that the existence of CO maser emission is consistent with the estimated mass-loss rates for W Hya. However, the pumping mechanism requires a complex interplay between absorption and emission lines in the extended atmosphere. Excess from dust in the circumstellar envelope of W Hya is not sufficient to contribute significantly to the required radiation field at 4.6 μm. The interplay between molecular lines that cause the pumping can be constrained by future multi-level CO observations.


2019 ◽  
Vol 623 ◽  
pp. A151
Author(s):  
V. Pérez-Mesa ◽  
O. Zamora ◽  
D. A. García-Hernández ◽  
Y. Osorio ◽  
T. Masseron ◽  
...  

Context. We previously explored the circumstellar effects on Rb and Zr abundances in a sample (21) of massive Galactic O-rich asymptotic giant branch (AGB) stars. Here we are interested in clarifying the role of the extended atmosphere in the case of Li and Ca. Li is an important indicator of hot bottom burning while the total Ca abundances in these stars could be affected by neutron captures. Aims. We report new Li and Ca abundances in a larger sample (30) of massive Galactic O-rich AGB stars by using more-realistic extended model atmospheres. Li abundances had previously studied with hydrostatic models, while the Ca abundances have been determined here for the first time. Methods. We used a modified version of the spectral synthesis code Turbospectrum and consider the presence of a gaseous circumstellar envelope and radial wind in the modelling of the spectra of these massive AGB stars. The Li and Ca abundances were obtained from the 6708 Å Li I and 6463 Å Ca I resonance lines, respectively. In addition, we studied the sensitivity of the pseudo-dynamical models to variations of the stellar and wind parameters. Results. The Li abundances derived with the pseudo-dynamical models are very similar to those obtained from hydrostatic models (the average difference is 0.18 dex, σ2 = 0.02), with no difference for Ca. This indicates that the Li and Ca content in these stars is only slightly affected by the presence of a circumstellar envelope. We also found that the Li I and Ca I line profiles are not very sensitive to variations of the model wind parameters. Conclusions. The new Li abundances confirm the Li-rich (and super Li-rich, in some cases) nature of the sample stars, supporting the activation of hot bottom burning in massive Galactic AGB stars. This is in good agreement with the theoretical predictions for solar metallicity AGB models from ATON, Monash, and NuGrid/MESA but is at odds with the FRUITY database, which predicts no hot bottom burning leading to the production of Li. Most (20) sample stars display nearly solar (within the estimated errors and considering possible non-local thermodynamic equilibrium effects) Ca abundances that are consistent with the available s-process nucleosynthesis models for solar metallicity massive AGB stars, which predict overproduction of 46Ca relatively to the other Ca isotope and the creation of the radioactive isotope 41Ca (half life of 0.1 Myr) but no change in the total Ca abundance. A minority (five) of the sample stars seem to show a significant Ca depletion (by up to 1.0 dex). Possible explanations are offered to explain their apparent and unexpected Ca depletion.


2019 ◽  
Vol 624 ◽  
pp. A107 ◽  
Author(s):  
J. L. Verbena ◽  
V. Bujarrabal ◽  
J. Alcolea ◽  
M. Gómez-Garrido ◽  
A. Castro-Carrizo

Context. Asymptotic giant branch (AGB) stars go through a process of strong mass loss that involves pulsations of the atmosphere, which extends to a region in which the conditions are adequate for dust grains to form. Radiation pressure acts on these grains which, coupled to the gas, drive a massive outflow. The details of this process are not clear, including which molecules are involved in the condensation of dust grains. Aims. We seek to study the role of the SiO molecule in the process of dust formation and mass loss in M-type AGB stars. Methods. Using the IRAM NOEMA interferometer we observed the 28SiO and 29SiO J = 3−2, v = 0 emission from the inner circumstellar envelope of the evolved stars IK Tau and IRC+10011. We computed azimuthally averaged emission profiles to compare the observations to models using a molecular excitation and ray-tracing code for SiO thermal emission. Results. We observe circular symmetry in the emission distribution. We also find that the source diameter varies only marginally with radial velocity, which is not the expected behaviour for envelopes expanding at an almost constant velocity. The adopted density, velocity, and abundance laws, together with the mass-loss rate, which best fit the observations, give us information concerning the chemical behaviour of the SiO molecule and its role in the dust formation process. Conclusions. The results indicate that there is a strong coupling between the depletion of gas-phase SiO and gas acceleration in the inner envelope. This could be explained by the condensation of SiO into dust grains.


2019 ◽  
Vol 623 ◽  
pp. A119 ◽  
Author(s):  
S. Bladh ◽  
K. Eriksson ◽  
P. Marigo ◽  
S. Liljegren ◽  
B. Aringer

Context. The heavy mass loss observed in evolved stars on the asymptotic giant branch (AGB) is usually attributed to dust-driven winds, but it is still an open question how much AGB stars contribute to the dust production in the interstellar medium, especially at lower metallicities. In the case of C-type AGB stars, where the wind is thought to be driven by radiation pressure on amorphous carbon grains, there should be significant dust production even in metal-poor environments. Carbon stars can manufacture the building blocks needed to form the wind-driving dust species themselves, irrespective of the chemical composition they have, by dredging up carbon from the stellar interior during thermal pulses. Aims. We investigate how the mass loss in carbon stars is affected by a low-metallicity environment, similar to the Large and Small Magellanic Clouds (LMC and SMC). Methods. The atmospheres and winds of C-type AGB stars are modeled with the 1D spherically symmetric radiation-hydrodynamical code Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN). The models include a time-dependent description for nucleation, growth, and evaporation of amorphous carbon grains directly out of the gas phase. To explore the metallicity-dependence of mass loss we calculate model grids at three different chemical abundances (solar, LMC, and SMC). Since carbon may be dredged up during the thermal pulses as AGB stars evolve, we keep the carbon abundance as a free parameter. The models in these three different grids all have a current mass of one solar mass; effective temperatures of 2600, 2800, 3000, or 3200 K; and stellar luminosities equal to logL*∕L⊙ = 3.70, 3.85, or 4.00. Results. The DARWIN models show that mass loss in carbon stars is facilitated by high luminosities, low effective temperatures, and a high carbon excess (C–O) at both solar and subsolar metallicities. Similar combinations of effective temperature, luminosity, and carbon excess produce outflows at both solar and subsolar metallicities. There are no large systematic differences in the mass-loss rates and wind velocities produced by these wind models with respect to metallicity, nor any systematic difference concerning the distribution of grain sizes or how much carbon is condensed into dust. DARWIN models at subsolar metallicity have approximately 15% lower mass-loss rates compared to DARWIN models at solar metallicity with the same stellar parameters and carbon excess. For both solar and subsolar environments typical grain sizes range between 0.1 and 0.5 μm, the degree of condensed carbon varies between 5 and 40%, and the gas-to-dust ratios between 500 and 10 000. Conclusions. C-type AGB stars can contribute to the dust production at subsolar metallicities (down to at least [Fe∕H] = −1) as long as they dredge up sufficient amounts of carbon from the stellar interior. Furthermore, stellar evolution models can use the mass-loss rates calculated from DARWIN models at solar metallicity when modeling the AGB phase at subsolar metallicities if carbon excess is used as the critical abundance parameter instead of the C/O ratio.


2019 ◽  
Vol 484 (2) ◽  
pp. 1865-1888 ◽  
Author(s):  
D T Hoai ◽  
P T Nhung ◽  
P Tuan-Anh ◽  
P Darriulat ◽  
P N Diep ◽  
...  

ABSTRACT ALMA observations of CO(1–0) and CO(2–1) emissions of the circumstellar envelope of EP Aqr, an oxygen-rich asymptotic giant branch star, are reported. A thorough analysis of their properties is presented using an original method based on the separation of the data cube into a low-velocity component associated with an equatorial outflow and a faster component associated with a bipolar outflow. A number of important and new results are obtained concerning the distribution in space of the effective emissivity, the temperature, the density, and the flux of matter. A mass-loss rate of (1.6 ± 0.4)×10−7 solar masses per year is measured. The main parameters defining the morphology and kinematics of the envelope are evaluated and uncertainties inherent to de-projection are critically discussed. Detailed properties of the equatorial region of the envelope are presented including a measurement of the line width and a precise description of the observed inhomogeneity of both morphology and kinematics. In particular, in addition to the presence of a previously observed spiral enhancement of the morphology at very small Doppler velocities, a similarly significant but uncorrelated circular enhancement of the expansion velocity is revealed, both close to the limit of sensitivity. The results of the analysis place significant constraints on the parameters of models proposing descriptions of the mass-loss mechanism, but cannot choose among them with confidence.


2020 ◽  
Vol 494 (1) ◽  
pp. 1323-1347 ◽  
Author(s):  
T Danilovich ◽  
A M S Richards ◽  
L Decin ◽  
M Van de Sande ◽  
C A Gottlieb

ABSTRACT We present and analyse SO and SO2, recently observed with high angular resolution and sensitivity in a spectral line survey with ALMA, for two oxygen-rich AGB stars: the low mass-loss rate R Dor and high mass-loss rate IK Tau. We analyse 8 lines of SO detected towards both stars, 78 lines of SO2 detected towards R Dor, and 52 lines of SO2 detected towards IK Tau. We detect several lines of 34SO, 33SO, and 34SO2 towards both stars, and tentatively S18O towards R Dor, and hence derive isotopic ratios for these species. The spatially resolved observations show us that the two sulphur oxides are co-located towards R Dor and trace out the same wind structures in the circumstellar envelope. Much of the emission is well reproduced with a Gaussian abundance distribution spatially centred on the star. Emission from the higher energy levels of SO and SO2 towards R Dor provides evidence in support of a rotating inner region of gas identified in earlier work. The new observations allow us to refine the abundance distribution of SO in IK Tau derived from prior observations with single antennas, and confirm that the distribution is shell like with the peak in the fractional abundance not centred on the star. The confirmation of different types of SO abundance distributions will help fine-tune chemical models and allows for an additional method to discriminate between low and high mass-loss rates for oxygen-rich AGB stars.


1994 ◽  
Vol 146 ◽  
pp. 113-133
Author(s):  
Hans Olofsson

Red giant stars on the asymptotic giant branch (AGB), AGB-stars, lose copious amounts of matter in a slow stellar wind (Olofsson 1993). Mass loss rates in excess of 10-4M⊙yr-1have been measured. The primary observational consequence of this mass loss is the formation of an expanding envelope of gas and dust, a circumstellar envelope (CSE), that surrounds the star. This is a truly extended atmosphere that continues thousands of stellar radii away from the star. At the highest mass loss rates (which probably occur at the end of the AGB evolution) the CSE becomes so opaque that the photosphere is hidden and essentially all information about the object stems from the circumstellar emission. At some point on the AGB a star may change from being O-rich (i.e., the abundance of O is higher than that of C) to becoming C-rich (i.e., a carbon star where the abundance of C is higher than that of O) as a result of nuclear-processed material being dredged up to the surface. The chemical composition of the CSE will follow that of the central star, although with some time delay so that there may be some rare cases of O-rich CSEs around carbon stars. The mass loss decreases and changes its nature as the star leaves the AGB and starts its post-AGB evolution. Eventually the star becomes hot enough to ionize the inner part of the AGB-CSE and a planetary nebula (PN) is formed. The ultimate fate of the star is a long life as a slowly cooling white dwarf. The CSE will gradually disperse and its metal-enriched matter will mix with the interstellar medium, and thereby it contributes to the chemical evolution of a galaxy. The intense mass loss makes it possible for stars as massive as 8 M⊙, i.e., the bulk of all stars in a galaxy, to follow this evolutionary sequence. Similar CSEs are also found around supergiants.


2016 ◽  
Vol 822 (2) ◽  
pp. 73 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

2014 ◽  
Vol 790 (1) ◽  
pp. 22 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document