scholarly journals Broadband spectral analysis of MXB 1659−298 in its soft and hard state

2019 ◽  
Vol 630 ◽  
pp. A138
Author(s):  
R. Iaria ◽  
S. M. Mazzola ◽  
T. Bassi ◽  
A. F. Gambino ◽  
A. Marino ◽  
...  

Context. The X-ray transient eclipsing source MXB 1659−298 went into outburst in 1999 and 2015. During these two outbursts the source was observed by XMM-Newton, NuSTAR, and Swift/XRT. Aims. Using these observations, we studied the broadband spectrum of the source to constrain the continuum components and to verify whether it had a reflection component, as is observed in other X-ray eclipsing transient sources. Methods. We combined the available spectra to study the soft and hard state of the source in the 0.45–55 keV energy range. Results. We report a reflection component in the soft and hard state. The direct emission in the soft state can be modeled with a thermal component originating from the inner accretion disk plus a Comptonized component associated with an optically thick corona surrounding the neutron star. On the other hand, the direct emission in the hard state is described only by a Comptonized component with a temperature higher than 130 keV; this component is associated with an optically thin corona. We observed narrow absorption lines from highly ionized ions of oxygen, neon, and iron in the soft spectral state. We investigated where the narrow absorption lines form in the ionized absorber. The equivalent hydrogen column density associated with the absorber is close to 6 × 1023 cm−2 and 1.3 × 1023 cm−2 in the soft and hard state, respectively.

2019 ◽  
Vol 621 ◽  
pp. A89 ◽  
Author(s):  
S. M. Mazzola ◽  
R. Iaria ◽  
T. Di Salvo ◽  
M. Del Santo ◽  
A. Sanna ◽  
...  

Context. Most of the X-ray binary systems containing neutron stars classified as Atoll sources show two different spectral states, referred to as soft and hard. Moreover, a large number of these systems show a reflection component relativistically smeared in their spectra, which provides information on the innermost region of the system. Aims. Our aim is to investigate the poorly studied broadband spectrum of the low-mass X-ray binary system 4U 1702-429, which was recently analysed combining XMM-Newton and INTEGRAL data. The peculiar value of the reflection fraction brought us to analyse further broadband spectra of 4U 1702-429. Methods. We re-analysed the spectrum of the XMM-Newton/INTEGRAL observation of 4U 1702-429 in the 0.3–60 keV energy range and we extracted three 0.1–100 keV spectra of the source analysing three observations collected with the BeppoSAX satellite. Results. We find that the XMM-Newton/INTEGRAL spectrum is well fitted using a model composed of a disc blackbody plus a Comptonised component and a smeared reflection component. We used the same spectral model for the BeppoSAX spectra, finding that the addition of a smeared reflection component is statistically significant. The best-fit values of the parameters are compatible to each other for the BeppoSAX spectra. We find that the reflection fraction is 0.05−0.01+0.3 for the XMM-Newton/INTEGRAL spectrum and between 0.15 and 0.4 for the BeppoSAX ones. Conclusions. The relative reflection fraction and the ionisation parameter are incompatible between the XMM-Newton/INTEGRAL and the BeppoSAX observations and the characteristics of the Comptonising corona suggest that the source was in a soft state in the former observation and in a hard state in the latter.


2020 ◽  
Vol 636 ◽  
pp. A51 ◽  
Author(s):  
Maria Hirsch ◽  
Katja Pottschmidt ◽  
David M. Smith ◽  
Arash Bodaghee ◽  
Marion Cadolle Bel ◽  
...  

We present the spectral and timing evolution of the persistent black hole X-ray binary GRS 1758−258 based on almost 12 years of observations using the Rossi X-ray Timing Explorer Proportional Counter Array. While the source was predominantly found in the hard state during this time, it entered the thermally dominated soft state seven times. In the soft state GRS 1758−258 shows a strong decline in flux above 3 keV rather than the pivoting flux around 10 keV more commonly shown by black hole transients. In its 3–20 keV hardness intensity diagram, GRS 1758−258 shows a hysteresis of hard and soft state fluxes typical for transient sources in outburst. The RXTE-PCA and RXTE-ASM long-term light curves do not show any orbital modulations in the range of 2–30 d. However, in the dynamic power spectra significant peaks drift between 18.47 and 18.04 d for the PCA data, while less significant signatures between 19 d and 20 d are seen for the ASM data as well as for the Swift/BAT data. We discuss different models for the hysteresis behavior during state transitions as well as possibilities for the origin of the long term variation in the context of a warped accretion disk.


2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2019 ◽  
Vol 492 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Xinwu Cao ◽  
Andrzej A Zdziarski

ABSTRACT The high-mass accreting binary Cyg X-3 is distinctly different from low-mass X-ray binaries (LMXBs) in having powerful radio and γ-ray emitting jets in its soft spectral state. However, the transition from the hard state to the soft one is first associated with quenching of the hard-state radio emission, as in LMXBs. The powerful soft-state jets in Cyg X-3 form, on average, ∼50 d later. We interpret the initial jet quenching as due to the hard-state vertical magnetic field quickly diffusing away in the thin disc extending to the innermost stable circular orbit in the soft state, or, if that field is produced in situ, also cessation of its generation. The subsequent formation of the powerful jets occurs due to advection of the magnetic field from the donor. We find this happens only above certain threshold accretion rate associated with appearance of magnetically driven outflows. The ∼50 d lag is of the order of the viscous time-scale in the outer disc, while the field advection is much faster. This process does not happen in LMXBs due to the magnetic fluxes available from their donors being lower than that for the wind accretion from the Wolf–Rayet donor of Cyg X-3. In our model, the vertical magnetic field in the hard state, required to form the jets both in Cyg X-3 and LMXBs, is formed in situ rather than advected from the donor. Our results provide a unified scenario of the soft and hard states in both Cyg X-3 and LMXBs.


2020 ◽  
Vol 498 (1) ◽  
pp. L40-L45
Author(s):  
Thomas J Maccarone ◽  
Arlo Osler ◽  
James C A Miller-Jones ◽  
P Atri ◽  
David M Russell ◽  
...  

ABSTRACT We present extremely deep upper limits on the radio emission from 4U 1957+11, an X-ray binary that is generally believed to be a persistently accreting black hole that is almost always in the soft state. We discuss a more comprehensive search for Type I bursts than in past work, revealing a stringent upper limit on the burst rate, bolstering the case for a black hole accretor. The lack of detection of this source at the 1.07 μJy/beam noise level indicates jet suppression that is stronger than expected even in the most extreme thin disc models for radio jet production – the radio power here is 1500–3700 times lower than the extrapolation of the hard state radio/X-ray correlation, with the uncertainties depending primarily on the poorly constrained source distance. We also discuss the location and velocity of the source and show that it must have either formed in the halo or with a strong asymmetric natal kick.


2019 ◽  
Vol 488 (4) ◽  
pp. 4831-4842 ◽  
Author(s):  
S Tripathi ◽  
S G H Waddell ◽  
L C Gallo ◽  
W F Welsh ◽  
C-Y Chiang

ABSTRACT We have carried out a systematic analysis of the nearby (z = 0.0279) active galaxy Zw 229.015 using multi-epoch, multi-instrument, and deep pointed observations with XMM–Newton, Suzaku, Swift,and NuSTAR. Spectral and temporal variability are examined in detail on both the long (weeks-to-years) and short (hours) time-scales. A deep Suzaku observation of the source shows two distinct spectral states; a bright-soft state and a dim-hard state in which changes in the power-law component account for the differences. Partial covering, blurred reflection, and soft Comptonization models describe the X-ray spectra comparably well, but the smooth, rather featureless, spectrum may be favouring the soft Comptonization scenario. Moreover, independent of the spectral model, the observed spectral variability is ascribed to the changes in the power-law continuum only and do not require changes in the properties of the absorber or blurred reflector incorporated in the other scenarios. The multi-epoch observations between 2009 and 2018 can be described in similar fashion. This could be understood if the primary emission is originating at a large distance from a standard accretion disc or if the disc is optically thin and geometrically thick as recently proposed for Zw 229.015. Our investigation shows that Zw 229.015 behaves similar to sources like Akn 120 and Mrk 530 that exhibit a strong soft excess, but weak Compton hump and Fe Kα emission.


2018 ◽  
Vol 620 ◽  
pp. A114 ◽  
Author(s):  
Z. Li ◽  
V. De Falco ◽  
M. Falanga ◽  
E. Bozzo ◽  
L. Kuiper ◽  
...  

SAX J1748.9–2021 is a transiently accreting X-ray millisecond pulsar. It is also known as an X-ray burster source discovered by Beppo-SAX. We analyzed the persistent emission and type-I X-ray burst properties during its 2015 outburst. The source changed from hard to soft state within half day. We modeled the broadband spectra of the persistent emission in the (1–250) keV energy band for both spectral states using the quasi-simultaneous INTEGRAL and Swift data. The broadband spectra are well fitted by an absorbed thermal Componization model, COMPPS, in a slab geometry. The best-fits for the two states indicate significantly different plasma temperature of 18 and 5 keV and the Thomson optical depths of three and four, respectively. In total, 56 type-I X-ray bursts were observed during the 2015 outburst, of which 26 detected by INTEGRAL in the hard state, 25 by XMM-Newton in the soft state, and five by Swift in both states. As the object transited from the hard to the soft state, the recurrence time for X-ray bursts decreased from ≈2 to ≈1 h. The relation between the recurrence time, Δtrec, and the local mass accretion rate per unit area onto the compact object, ṁ, is fitted by a power-law model, and yielded as best fit at Δtrec ∼ ⟨ṁ⟩−1.02±0.03 using all X-ray bursts. In both cases, the observed recurrence times are consistent with the mixed hydrogen and helium bursts. We also discuss the effects of type-I X-ray bursts prior to the hard to soft transition.


2020 ◽  
Vol 635 ◽  
pp. A209
Author(s):  
R. Iaria ◽  
S. M. Mazzola ◽  
T. Di Salvo ◽  
A. Marino ◽  
A. F. Gambino ◽  
...  

Context. GX 9+9 (4U 1728−16) is a low mass X-ray binary source harboring a neutron star. Although it belongs to the subclass of the bright Atoll sources together with GX 9+1, GX 3+1, and GX 13+1, its broadband spectrum is poorly studied and apparently does not show reflection features in the spectrum. Aims. To constrain the continuum well and verify whether a relativistic smeared reflection component is present, we analyze the broadband spectrum of GX 9+9 using BeppoSAX and XMM-Newton spectra covering the 0.3−40 keV energy band. Methods. We fit the spectrum adopting a model composed of a disk-blackbody plus a Comptonized component whose seed photons have a blackbody spectrum (Eastern Model). A statistically equivalent model is composed of a Comptonized component whose seed photons have a disk-blackbody distribution plus a blackbody that mimics a saturated Comptonization likely associated with a boundary layer (Western model). Other trials did not return a good fit. Results. The spectrum of GX 9+9 was observed in a soft state and its luminosity is 2.3 × 1037 erg s−1 assuming a distance to the source of 5 kpc. In the Eastern Model scenario, we find the seed-photon temperature and electron temperature of the Comptonized component to be 1.14−0.07+0.10 keV and 2.80−0.04+0.09 keV, respectively, while the optical depth of the Comptonizing corona is 8.9 ± 0.4. The color temperature of the inner accretion disk is 0.86−0.02+0.08 keV and 0.82 ± 0.02 keV for the BeppoSAX and XMM-Newton spectrum, respectively. In the Western Model scenario, instead, we find that the seed-photon temperature is 0.87 ± 0.07 keV and 1.01 ± 0.08 keV for the BeppoSAX and XMM-Newton spectrum, respectively. The electron temperature of the Comptonized component is 2.9 ± 0.2 keV, while the optical depth is 9.4−1.1+1.5. The blackbody temperature is 1.79−0.18+0.09 keV and 1.85−0.15+0.07 keV for the BeppoSAX and XMM-Newton spectrum, respectively. The addition of a relativistic smeared reflection component improved the fit in both the scenarios, giving compatible values of the parameters, even though a significant broad emission line in the Fe-K region is not observed. Conclusions. From the reflection component we estimated an inclination angle of about 43−4+6 deg and 51−2+9 deg for the Eastern and Western Model, respectively. The value of the reflection fraction Ω/2π is 0.18 ± 0.04 and 0.21 ± 0.03 for the Eastern and Western Model, respectively, suggesting that the Comptonized corona should be compact and close to the innermost region of the system.


Author(s):  
D M Russell ◽  
P Casella ◽  
E Kalemci ◽  
A Vahdat Motlagh ◽  
P Saikia ◽  
...  

Abstract Recent advancements in the understanding of jet–disc coupling in black hole candidate X-ray binaries (BHXBs) have provided close links between radio jet emission and X-ray spectral and variability behaviour. In ‘soft’ X-ray states the jets are suppressed, but the current picture lacks an understanding of the X-ray features associated with the quenching or recovering of these jets. Here we show that a brief, ∼4 day infrared (IR) brightening during a predominantly soft X-ray state of the BHXB 4U 1543–47 is contemporaneous with a strong X-ray Type B quasi-periodic oscillation (QPO), a slight spectral hardening and an increase in the rms variability, indicating an excursion to the soft–intermediate state (SIMS). This IR ‘flare’ has a spectral index consistent with optically thin synchrotron emission and most likely originates from the steady, compact jet. This core jet emitting in the IR is usually only associated with the hard state, and its appearance during the SIMS places the ‘jet line’ between the SIMS and the soft state in the hardness–intensity diagram for this source. IR emission is produced in a small region of the jets close to where they are launched (∼0.1 light-seconds), and the timescale of the IR flare in 4U 1543–47 is far too long to be caused by a single, discrete ejection. We also present a summary of the evolution of the jet and X-ray spectral/variability properties throughout the whole outburst, constraining the jet contribution to the X-ray flux during the decay.


2020 ◽  
Vol 496 (1) ◽  
pp. L96-L100
Author(s):  
Ilia A Kosenkov ◽  
Alexandra Veledina ◽  
Andrei V Berdyugin ◽  
Vadim Kravtsov ◽  
Vilppu Piirola ◽  
...  

ABSTRACT We describe the first complete polarimetric data set of the entire outburst of a low-mass black hole X-ray binary system and discuss the constraints for geometry and radiative mechanisms it imposes. During the decaying hard state, when the optical flux is dominated by the non-thermal component, the observed polarization is consistent with the interstellar values in all filters. During the soft state, the intrinsic polarization of the source is small, ∼0.15 per cent in B and V filters, and is likely produced in the irradiated disc. A much higher polarization, reaching ∼0.5 per cent in V and R filters, at a position angle of ∼25○ observed in the rising hard state coincides in time with the detection of winds in the system. This angle coincides with the position angle of the jet. The detected optical polarization is best explained by scattering of the non-thermal (hot flow or jet base) radiation in an equatorial wind.


Sign in / Sign up

Export Citation Format

Share Document