scholarly journals Magnetic fields in massive spirals: The role of feedback and initial conditions

2018 ◽  
Vol 619 ◽  
pp. L5 ◽  
Author(s):  
Evangelia Ntormousi

Context. Magnetic fields play a very important role in the evolution of galaxies through their direct impact on star formation and stellar feedback-induced turbulence. However, their co-evolution with these processes has still not been thoroughly investigated, and the possible effect of the initial conditions is largely unknown. Aims. This Letter presents the first results from a series of high-resolution numerical models, aimed at deciphering the effect of the initial conditions and of stellar feedback on the evolution of the galactic magnetic field in isolated Milky Way-like galaxies. Methods. The models start with an ordered magnetic field of varying strength, either poloidal or toroidal, and are evolved with and without supernova feedback. They include a dark matter halo, a stellar and a gaseous disk, as well as the appropriate cooling and heating processes for the interstellar medium. Results. Independently of the initial conditions, the galaxies develop a turbulent velocity field and a random magnetic field component in under 15 Myr. Supernova feedback is extremely efficient in building a random magnetic field component up to large galactic heights. However, a random magnetic field emerges even in runs without feedback, which points to an inherent instability of the ordered component. Conclusions. Supernova feedback greatly affects the velocity field of the galaxy up to large galactic heights, and helps restructure the magnetic field up to 10 kpc above the disk, independently of the initial magnetic field morphology. On the other hand, the initial morphology of the magnetic field can accelerate the development of a random component at large heights. These effects have important implications for the study of the magnetic field evolution in galaxy simulations.

1971 ◽  
Vol 43 ◽  
pp. 192-200 ◽  
Author(s):  
Einar Tandberg-Hanssen

The longitudinal component of the magnetic field, B∥, has been recorded in about 135 quiescent prominences observed at Climax during the period 1968–1969. The measurements were obtained with the magnetograph which records the Zeeman effect on hydrogen, helium and metal lines. The following lines were used, Hα; He I, D3, He I, 4471 Å; Na I, D1 and D2, and the observed magnetic field component in these prominences was independent of the line. The overall mean value of the field B∥ for all the prominences was 7.3G. As a rule, the magnetic field enters the prominence on one side and exits on the other, but in traversing the prominence material, the field tends to run along the long axis of the prominence.


2007 ◽  
Vol 22 (2) ◽  
pp. 20-28 ◽  
Author(s):  
Radivoje Popovic ◽  
Pavel Kejik ◽  
Serge Reymond ◽  
Dragana Popovic ◽  
Marjan Blagojevic ◽  
...  

Conventional Hall magnetic sensors respond only to the magnetic field component perpendicular to the surface of the sensor die. Multi-axis sensing capability can be provided in the following two ways: (a) by integrating magnetic flux concentrators on the die, and (b) by using vertical Hall devices. Here we review the most important two-and three-axis integrated Hall magnetic sensors based on these concepts. Their applications include mapping of magnetic fields and sensing angular position.


2011 ◽  
Vol 20 (10) ◽  
pp. 2019-2022
Author(s):  
J. WANG ◽  
C. M. ZHANG ◽  
Y. H. ZHAO

In binary systems, the rotation of neutron stars can be spun up by the accreted material, and at the same time the decay of their magnetic fields occur in the accretion phase. As a result, the spin period may arrive at a minimum of about 1.5 ms, corresponding to a bottom value of the magnetic field ~ 108 G. Taking the conditions: (i) initial magnetic field varying from 1011 G to 1013 G while setting period as 100 s, (ii) initial period as 1–100 s at B = 5 × 1012 G , we find that this minimum of spin period seems independent of these initial conditions.


1991 ◽  
Vol 147 ◽  
pp. 75-81
Author(s):  
J. L. Puget

Magnetic fields are believed to play an important role in the star formation process. Correlations in the velocity field in molecular filaments are indicative of dynamical interactions between clouds and parts within a cloud. The magnetic field is a likely candidate as the vector of such interactions. Perturbations of the field at large scales can feed the velocity dispersion within condensations at small scale. This mechanism is discussed in the framework of two simple analytical approximations describing transverse waves fed into plane parallel slabs.


2018 ◽  
Vol 620 ◽  
pp. A104 ◽  
Author(s):  
M. Schmassmann ◽  
R. Schlichenmaier ◽  
N. Bello González

Context. In a recent statistical study of sunspots in 79 active regions, the vertical magnetic field component Bver averaged along the umbral boundary is found to be independent of sunspot size. The authors of that study conclude that the absolute value of Bver at the umbral boundary is the same for all spots. Aims. We investigate the temporal evolution of Bver averaged along the umbral boundary of one long-lived sunspot during its stable phase. Methods. We analysed data from the HMI instrument on-board SDO. Contours of continuum intensity at Ic = 0.5Iqs, whereby Iqs refers to the average over the quiet sun areas, are used to extract the magnetic field along the umbral boundary. Projection effects due to different formation heights of the Fe I 617.3 nm line and continuum are taken into account. To avoid limb artefacts, the spot is only analysed for heliocentric angles smaller than 60°. Results. During the first disc passage, NOAA AR 11591, Bver remains constant at 1693 G with a root-mean-square deviation of 15 G, whereas the magnetic field strength varies substantially (mean 2171 G, rms of 48 G) and shows a long term variation. Compensating for formation height has little influence on the mean value along each contour, but reduces the variations along the contour when away from disc centre, yielding a better match between the contours of Bver = 1693 G and Ic = 0.5Iqs. Conclusions. During the disc passage of a stable sunspot, its umbral boundary can equivalently be defined by using the continuum intensity Ic or the vertical magnetic field component Bver. Contours of fixed magnetic field strength fail to outline the umbral boundary.


2019 ◽  
Vol 631 ◽  
pp. A52 ◽  
Author(s):  
T. Joubaud ◽  
I. A. Grenier ◽  
J. Ballet ◽  
J. D. Soler

Aims. The Orion-Eridanus superbubble has been blown by supernovae and supersonic winds of the massive stars in the Orion OB associations. It is the nearest site at which stellar feedback on the interstellar medium that surrounds young massive clusters can be studied. The formation history and current structure of the superbubble are still poorly understood, however. It has been pointed out that the picture of a single expanding object should be replaced by a combination of nested shells that are superimposed along the line of sight. We have investigated the composite structure of the Eridanus side of the superbubble in the light of a new decomposition of the atomic and molecular gas. Methods. We used H I 21 cm and CO (J = 1−0) emission lines to separate coherent gas shells in space and velocity, and we studied their relation to the warm ionised gas probed in Hα emission, the hot plasma emitting X-rays, and the magnetic fields traced by dust polarised emission. We also constrained the relative distances to the clouds using dust reddening maps and X-ray absorption. We applied the Davis–Chandrasekhar–Fermi method to the dust polarisation data to estimate the plane-of-sky components of the magnetic field in several clouds and along the outer rim of the superbubble. Results. Our gas decomposition has revealed several shells inside the superbubble that span distances from about 150–250 pc. One of these shells forms a nearly complete ring filled with hot plasma. Other shells likely correspond to the layers of swept-up gas that is compressed behind the expanding outer shock wave. We used the gas and magnetic field data downstream of the shock to derive the shock expansion velocity, which is close to ~20 km s−1. Taking the X-ray absorption by the gas into account, we find that the hot plasma inside the superbubble is over-pressured compared to plasma in the Local Bubble. The plasma comprises a mix of hotter and cooler gas along the lines of sight, with temperatures of (3–9) and (0.3 − 1.2) × 106 K, respectively. The magnetic field along the western and southern rims and in the approaching wall of the superbubble appears to be shaped and compressed by the ongoing expansion. We find plane-of-sky magnetic field strengths from 3 to 15 μG along the rim.


Sign in / Sign up

Export Citation Format

Share Document