scholarly journals Upper limits on CH3OH in the HD 163296 protoplanetary disk

2019 ◽  
Vol 623 ◽  
pp. A124 ◽  
Author(s):  
M. T. Carney ◽  
M. R. Hogerheijde ◽  
V. V. Guzmán ◽  
C. Walsh ◽  
K. I. Öberg ◽  
...  

Context. Methanol (CH3OH) is at the root of organic ice chemistry in protoplanetary disks. Its connection to prebiotic chemistry and its role in the chemical environment of the disk midplane make it an important target for disk chemistry studies. However, its weak emission has made detections difficult. To date, gas-phase CH3OH is detected in only one Class II disk, TW Hya. Aims. We aim to constrain the methanol content of the HD 163296 protoplanetary disk. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to search for a total of four CH3OH emission lines in bands six and seven toward the disk around the young Herbig Ae star HD 163296. The disk-averaged column density of methanol and its related species formaldehyde (H2CO) were estimated assuming optically thin emission in local thermodynamic equilibrium. We compared these results to the gas-phase column densities of the TW Hya disk. Results. No targeted methanol lines were detected with Keplerian masking in the image plane nor with matched filter analysis in the uv plane individually nor after line stacking. The 3σ disk-integrated intensity upper limits are <51 mJy km s−1 for the band six lines and <26 mJy km s−1 for the band seven lines. The band seven lines provide the strictest 3σ upper limit on disk-averaged column density with Navg < 5.0 × 1011 cm−2. The methanol-to-formaldehyde ratio is CH3OH∕H2CO<0.24 in the HD 163296 disk compared to a ratio of 1.27 in the TW Hya disk. Conclusions. The HD 163296 protoplanetary disk is less abundant in methanol with respect to formaldehyde compared to the disk around TW Hya. Differences in the stellar irradiation in this Herbig Ae disk as compared to that of a disk around a T Tauri star likely influence the gaseous methanol and formaldehyde content. Possible reasons for the lower HD 163296 methanol-to-formaldehyde ratio include: a higher than expected gas-phase formation of H2CO in the HD 163296 disk, uncertainties in the grain surface formation efficiency of CH3OH and H2CO, and differences in the disk structure and/or CH3OH and H2CO desorption processes that drive the release of the molecules from ice mantles back into the gas phase. These results provide observational evidence that the gas-phase chemical complexity found in disks may be strongly influenced by the spectral type of the host star.

2021 ◽  
Vol 922 (1) ◽  
pp. 62
Author(s):  
Alessandra Canta ◽  
Richard Teague ◽  
Romane Le Gal ◽  
Karin I. Öberg

Abstract We report the first detection of the molecule cyanomethyl, CH2CN, in a protoplanetary disk. Until now, CH2CN had only been observed at earlier evolutionary stages, in the molecular clouds TMC-1, Sgr2, and L483, in the prestellar core L1544, and toward the protostar L1527. We detect six transitions of ortho-CH2CN toward the disk around nearby T Tauri star TW Hya. An excitation analysis reveals that the disk-averaged column density, N , for ortho-CH2CN is (6.3 ± 0.5) × 1012 cm−2, which is rescaled to reflect a 3:1 ortho-para ratio, resulting in a total column density, N tot, of (8.4 ± 0.7) × 1012 cm−2. We calculate a disk-average rotational temperature, T rot = 40 ± 5 K, while a radially resolved analysis shows that T rot remains relatively constant across the radius of the disk. This high rotation temperature suggests that in a static disk and if vertical mixing can be neglected, CH2CN is largely formed through gas-phase reactions in the upper layers of the disk, rather than solid-state reactions on the surface of grains in the disk midplane. The integrated intensity radial profiles show a ring structure consistent with molecules such as CN and DCN. We note that this is also consistent with previous lower-resolution observations of centrally peaked CH3CN emission toward the TW Hya disks, since the observed emission gap disappears when convolving our observations with a larger beam size. We obtain a CH2CN/CH3CN ratio ranging between 4 and 10. This high CH2CN/CH3CN is reproduced in a representative chemical model of the TW Hya disk that employs standard static disk chemistry model assumptions, i.e., without any additional tuning.


2018 ◽  
Vol 616 ◽  
pp. L5 ◽  
Author(s):  
N. T. Phuong ◽  
E. Chapillon ◽  
L. Majumdar ◽  
A. Dutrey ◽  
S. Guilloteau ◽  
...  

Context. Studying molecular species in protoplanetary disks is very useful to characterize the properties of these objects, which are the site of planet formation. Aims. We attempt to constrain the chemistry of S-bearing molecules in the cold parts of circumstellar disk of GG Tau A. Methods. We searched for H2S, CS, SO, and SO2 in the dense disk around GG Tau A with the NOrthem Extended Millimeter Array (NOEMA) interferometer. We analyzed our data using the radiative transfer code DiskFit and the three-phase chemical model Nautilus. Results. We detected H2S emission from the dense and cold ring orbiting around GG Tau A. This is the first detection of H2S in a protoplanetary disk. We also detected HCO+, H13CO+, and DCO+ in the disk. Upper limits for other molecules, CCS, SO2, SO, HC3N, and c-C3H2 are also obtained. The observed DCO+/HCO+ ratio is similar to those in other disks. The observed column densities, derived using our radiative transfer code DiskFit, are then compared with those from our chemical code Nautilus. The column densities are in reasonable agreement for DCO+, CS, CCS, and SO2. For H2S and SO, our predicted vertical integrated column densities are more than a factor of 10 higher than the measured values. Conclusions. Our results reinforce the hypothesis that only a strong sulfur depletion may explain the low observed H2S column density in the disk. The H2S detection in GG Tau A is most likely linked to the much larger mass of this disk compared to that in other T Tauri systems.


2018 ◽  
Vol 617 ◽  
pp. A31 ◽  
Author(s):  
T. Alonso-Albi ◽  
P. Riviere-Marichalar ◽  
A. Fuente ◽  
S. Pacheco-Vázquez ◽  
B. Montesinos ◽  
...  

Context. To our knowledge, R Mon is the only B0 star in which a gaseous Keplerian disk has been detected. However, there is some controversy about the spectral type of R Mon. Some authors propose that it could be a later B8e star, where disks are more common. Aims. Our goal is to re-evaluate the R Mon spectral type and characterize its protoplanetary disk. Methods. The spectral type of R Mon has been re-evaluated using the available continuum data and UVES emission lines. We used a power-law disk model to fit previous 12CO 1 →0 and 2 →1 interferometric observations and the PACS CO data to investigate the disk structure. Interferometric detections of 13CO J = 1 →0, HCO+ 1 →0, and CN 1 →0 lines using the IRAM Plateau de Bure Interferometer (PdBI) are presented. The HCN 1 →0 line was not detected. Results. Our analysis confirms that R Mon is a B0 star. The disk model compatible with the 12CO 1 →0 and 2 →1 interferometric observations falls short of predicting the observed fluxes of the 14 < Ju < 31 PACS lines; this is consistent with the scenario in which some contribution to these lines is coming from a warm envelope and/or UV-illuminated outflow walls. More interestingly, the upper limits to the fluxes of the Ju > 31 CO lines suggest the existence of a region empty of CO at R ≲ 20 au in the protoplanetary disk. The intense emission of the HCO+ and CN lines shows the strong influence of UV photons on gas chemistry. Conclusions. The observations gathered in this paper are consistent with the presence of a transition disk with a cavity of Rin ≳ 20 au around R Mon. This size is similar to the photoevaporation radius that supports the interpretation that UV photoevaporation is main disk dispersal mechanism in massive stars


2018 ◽  
Vol 18 (19) ◽  
pp. 14005-14015 ◽  
Author(s):  
Terry J. Dillon ◽  
John N. Crowley

Abstract. Pulsed laser excitation of NO2 (532–647 nm) or NO3 (623–662 nm) in the presence of H2O was used to initiate the gas-phase reaction NO2∗+H2O → products (Reaction R5) and NO3∗+H2O → products (Reaction R12). No evidence for OH production in Reactions (R5) or (R12) was observed and upper limits for OH production of k5b/k5<1×10-5 and k12b/k12<0.03 were assigned. The upper limit for k5b∕k5 renders this reaction insignificant as a source of OH in the atmosphere and extends the studies (Crowley and Carl, 1997; Carr et al., 2009; Amedro et al., 2011) which demonstrate that the previously reported large OH yield by Li et al. (2008) was erroneous. The upper limit obtained for k12b∕k12 indicates that non-reactive energy transfer is the dominant mechanism for Reaction (R12), though generation of small but significant amounts of atmospheric HOx and HONO cannot be ruled out. In the course of this work, rate coefficients for overall removal of NO3∗ by N2 (Reaction R10) and by H2O (Reaction R12) were determined: k10=(2.1±0.1)×10-11 cm3 molecule−1 s−1 and k12=(1.6±0.3)×10-10 cm3 molecule−1 s−1. Our value of k12 is more than a factor of 4 smaller than the single previously reported value.


2008 ◽  
Vol 4 (S251) ◽  
pp. 221-226
Author(s):  
Isabelle Cherchneff ◽  
Simon Lilly

AbstractWe present new chemical models of supernova (SN) ejecta based on a chemical kinetic approach. We focus on the formation of inorganic and organic molecules including gas phase dust precursors, and consider zero-metallicity progenitor, massive supernovae and nearby core-collapse supernovae such as SN1987A. We find that both types are forming large amounts of molecules in their ejecta at times as early as 200 days after explosion. Upper limits on the dust formation budget are derived. Our results on dust precursors do not agree with existing studies on dust condensation in SN ejecta. We conclude that PMSNe could be the first non-primodial molecule providers in the early universe, ejecting up to 34% of their progenitor mass under molecular form to the pristine, local gas.


2019 ◽  
Vol 627 ◽  
pp. L4 ◽  
Author(s):  
J. Cernicharo ◽  
L. Velilla-Prieto ◽  
M. Agúndez ◽  
J. R. Pardo ◽  
J. P. Fonfría ◽  
...  

We report on the detection of calcium isocyanide, CaNC, in the carbon-rich evolved star IRC+10216. We derived a column density for this species of (2 ± 0.5) × 1011 cm−2. Based on the observed line profiles and the modelling of its emission through the envelope, the molecule has to be produced in the intermediate and outer layers of the circumstellar envelope where other metal-isocyanides have previously been found in this source. The abundance ratio of CaNC relative to MgNC and FeCN is ≃1/60 and ≃1, respectively. We searched for the species CaF, CaCl, CaC, CaCCH, and CaCH3 for which accurate frequency predictions are available. Only upper limits have been obtained for these molecules.


2018 ◽  
Vol 14 (S345) ◽  
pp. 128-131
Author(s):  
József Varga ◽  
Péter Ábrahám ◽  
Lei Chen ◽  
Thorsten Ratzka ◽  
K. É. Gabányi ◽  
...  

AbstractWe present our results from a mid-infrared interferometric survey targeted at the planet-forming region in the circumstellar disks around low- and intermediate-mass young stars. Our sample consists of 82 objects, including T Tauri stars, Herbig Ae stars, and young eruptive stars. Our main results are: 1) Disks around T Tauri stars are similar to those around Herbig Ae stars, but are relatively more extended once we account for stellar luminosity. 2) From the distribution of the sizes of the mid-infrared emitting region we find that inner dusty disk holes may be present in roughly half of the sample. 3) Our analysis of the silicate spectral feature reveals that the dust in the inner ~1 au region of disks is generally more processed than that in the outer regions. 4) The dust in the disks of T Tauri stars typically show weaker silicate emission in the N band spectrum, compared to Herbig Ae stars, which may indicate a general difference in the disk structure. Our data products are available at VizieR, and at the following web page: http://konkoly.hu/MIDI_atlas.


2018 ◽  
Vol 853 (2) ◽  
pp. 112 ◽  
Author(s):  
F. Fraschetti ◽  
J. J. Drake ◽  
O. Cohen ◽  
C. Garraffo

2000 ◽  
Vol 544 (2) ◽  
pp. L107-L110 ◽  
Author(s):  
B. P. Wakker ◽  
J. S. Mathis

2020 ◽  
Vol 494 (3) ◽  
pp. 3627-3641 ◽  
Author(s):  
J R Allison ◽  
E M Sadler ◽  
S Bellstedt ◽  
L J M Davies ◽  
S P Driver ◽  
...  

ABSTRACT We present early science results from the First Large Absorption Survey in H i (FLASH), a spectroscopically blind survey for 21-cm absorption lines in cold hydrogen (H i) gas at cosmological distances using the Australian Square Kilometre Array Pathfinder (ASKAP). We have searched for H i absorption towards 1253 radio sources in the GAMA 23 field, covering redshifts between z = 0.34 and 0.79 over a sky area of approximately 50 deg2. In a purely blind search, we did not obtain any detections of 21-cm absorbers above our reliability threshold. Assuming a fiducial value for the H i spin temperature of Tspin = 100 K and source covering fraction cf = 1, the total comoving absorption path-length sensitive to all Damped Lyman α Absorbers (DLAs; NH i ≥ 2 × 1020 cm−2) is ΔX = 6.6 ± 0.3 (Δz = 3.7 ± 0.2) and super-DLAs (NH i ≥ 2 × 1021 cm−2) is ΔX = 111 ± 6 (Δz= 63 ± 3). We estimate upper limits on the H i column density frequency distribution function that are consistent with measurements from prior surveys for redshifted optical DLAs, and nearby 21-cm emission and absorption. By cross-matching our sample of radio sources with optical spectroscopic identifications of galaxies in the GAMA 23 field, we were able to detect 21-cm absorption at z = 0.3562 towards NVSS J224500−343030, with a column density of $N_{\rm H\,\small{I}} = (1.2 \pm 0.1) \times 10^{20}\, (T_{\rm spin}/100\, \mathrm{K})$ cm−2. The absorber is associated with GAMA J22450.05−343031.7, a massive early-type galaxy at an impact parameter of 17 kpc with respect to the radio source and which may contain a massive (MH i ≳ 3 × 109 M⊙) gas disc. Such gas-rich early types are rare, but have been detected in the nearby Universe.


Sign in / Sign up

Export Citation Format

Share Document