scholarly journals A mid-infrared interferometric survey of the planet-forming region around young Sun-like stars

2018 ◽  
Vol 14 (S345) ◽  
pp. 128-131
Author(s):  
József Varga ◽  
Péter Ábrahám ◽  
Lei Chen ◽  
Thorsten Ratzka ◽  
K. É. Gabányi ◽  
...  

AbstractWe present our results from a mid-infrared interferometric survey targeted at the planet-forming region in the circumstellar disks around low- and intermediate-mass young stars. Our sample consists of 82 objects, including T Tauri stars, Herbig Ae stars, and young eruptive stars. Our main results are: 1) Disks around T Tauri stars are similar to those around Herbig Ae stars, but are relatively more extended once we account for stellar luminosity. 2) From the distribution of the sizes of the mid-infrared emitting region we find that inner dusty disk holes may be present in roughly half of the sample. 3) Our analysis of the silicate spectral feature reveals that the dust in the inner ~1 au region of disks is generally more processed than that in the outer regions. 4) The dust in the disks of T Tauri stars typically show weaker silicate emission in the N band spectrum, compared to Herbig Ae stars, which may indicate a general difference in the disk structure. Our data products are available at VizieR, and at the following web page: http://konkoly.hu/MIDI_atlas.

2018 ◽  
Vol 617 ◽  
pp. A83 ◽  
Author(s):  
J. Varga ◽  
P. Ábrahám ◽  
L. Chen ◽  
Th. Ratzka ◽  
K. É. Gabányi ◽  
...  

Context. Protoplanetary disks show large diversity regarding their morphology and dust composition. With mid-infrared interferometry the thermal emission of disks can be spatially resolved, and the distribution and properties of the dust within can be studied. Aims. Our aim is to perform a statistical analysis on a large sample of 82 disks around low- and intermediate-mass young stars, based on mid-infrared interferometric observations. We intend to study the distribution of disk sizes, variability, and the silicate dust mineralogy. Methods. Archival mid-infrared interferometric data from the MIDI instrument on the Very Large Telescope Interferometer are homogeneously reduced and calibrated. Geometric disk models are used to fit the observations to get spatial information about the disks. An automatic spectral decomposition pipeline is applied to analyze the shape of the silicate feature. Results. We present the resulting data products in the form of an atlas, containing N band correlated and total spectra, visibilities, and differential phases. The majority of our data can be well fitted with a continuous disk model, except for a few objects, where a gapped model gives a better match. From the mid-infrared size–luminosity relation we find that disks around T Tauri stars are generally colder and more extended with respect to the stellar luminosity than disks around Herbig Ae stars. We find that in the innermost part of the disks (r ≲ 1 au) the silicate feature is generally weaker than in the outer parts, suggesting that in the inner parts the dust is substantially more processed. We analyze stellar multiplicity and find that in two systems (AB Aur and HD 72106) data suggest a new companion or asymmetric inner disk structure. We make predictions for the observability of our objects with the upcoming Multi-AperTure mid-Infrared SpectroScopic Experiment (MATISSE) instrument, supporting the practical preparations of future MATISSE observations of T Tauri stars.


1997 ◽  
Vol 161 ◽  
pp. 267-282 ◽  
Author(s):  
Thierry Montmerle

AbstractFor life to develop, planets are a necessary condition. Likewise, for planets to form, stars must be surrounded by circumstellar disks, at least some time during their pre-main sequence evolution. Much progress has been made recently in the study of young solar-like stars. In the optical domain, these stars are known as «T Tauri stars». A significant number show IR excess, and other phenomena indirectly suggesting the presence of circumstellar disks. The current wisdom is that there is an evolutionary sequence from protostars to T Tauri stars. This sequence is characterized by the initial presence of disks, with lifetimes ~ 1-10 Myr after the intial collapse of a dense envelope having given birth to a star. While they are present, about 30% of the disks have masses larger than the minimum solar nebula. Their disappearance may correspond to the growth of dust grains, followed by planetesimal and planet formation, but this is not yet demonstrated.


2009 ◽  
Vol 5 (H15) ◽  
pp. 815-815
Author(s):  
Antonio S. Hales ◽  
Michael J. Barlow ◽  
Janet E. Drew ◽  
Yvonne C. Unruh ◽  
Robert Greimel ◽  
...  

AbstractThe Isaac Newton Photometric H-Alpha Survey (IPHAS) provides (r′-Hα)-(r′-i′) colors, which can be used to select AV0-5 Main Sequence star candidates (age~20-200 Myr). By combining a sample of 23050 IPHAS-selected A-type stars with 2MASS, GLIMPSE and MIPSGAL photometry we searched for mid-infrared excesses attributable to dusty circumstellar disks. Positional cross-correlation yielded a sample of 2692 A-type stars, of which 0.6% were found to have 8-μm excesses above the expected photospheric values. The low fraction of main sequence stars with mid-IR excesses found in this work indicates that dust disks in the terrestrial planet zone of Main Sequence intermediate mass stars are rare. Dissipation mechanisms such as photo-evaporation, grain growth, collisional grinding or planet formation could possibly explain the depletion of dust detected in the inner regions of these disks.


2019 ◽  
Vol 622 ◽  
pp. A72 ◽  
Author(s):  
F. Villebrun ◽  
E. Alecian ◽  
G. Hussain ◽  
J. Bouvier ◽  
C. P. Folsom ◽  
...  

Context. The origin of the fossil magnetic fields detected in 5 to 10% of intermediate-mass main sequence stars is still highly debated.Aims. We want to bring observational constraints to a large population of intermediate-mass pre-main sequence (PMS) stars in order to test the theory that convective-dynamo fields generated during the PMS phases of stellar evolution can occasionally relax into fossil fields on the main sequence.Methods. Using distance estimations, photometric measurements, and spectropolarimetric data from HARPSpol and ESPaDOnS of 38 intermediate-mass PMS stars, we determined fundamental stellar parameters (Teff,Landvsini) and measured surface magnetic field characteristics (including detection limits for non-detections, and longitudinal fields and basic topologies for positive detections). Using PMS evolutionary models, we determined the mass, radius, and internal structure of these stars. We compared different PMS models to check that our determinations were not model-dependant. We then compared the magnetic characteristics of our sample accounting for their stellar parameters and internal structures.Results. We detect magnetic fields in about half of our sample. About 90% of the magnetic stars have outer convective envelopes larger than ∼25% of the stellar radii, and heavier than ∼2% of the stellar mass. Going to higher mass, we find that the magnetic incidence in intermediate-mass stars drops very quickly, within a timescale on the order of few times 0.1 Myr. Finally, we propose that intermediate-mass T Tauri stars with large convective envelopes, close to the fully convective limit, have complex fields and that their dipole component strengths may decrease as the sizes of their convective envelopes decrease, similar to lower-mass T Tauri stars.


2018 ◽  
Vol 14 (A30) ◽  
pp. 123-123
Author(s):  
Markus Schöller ◽  
Swetlana Hubrig

AbstractModels of magnetically driven accretion reproduce many observational properties of T Tauri stars. For the more massive Herbig Ae/Be stars, the corresponding picture has been questioned lately, in part driven by the fact that their magnetic fields are typically one order of magnitude weaker. Indeed, the search for magnetic fields in Herbig Ae/Be stars has been quite time consuming, with a detection rate of about 10% (e.g. Alecian et al. 2008), also limited by the current potential to detect weak magnetic fields. Over the last two decades, magnetic fields were found in about twenty objects (Hubrig et al. 2015) and for only two Herbig Ae/Be stars was the magnetic field geometry constrained. Ababakr, Oudmaijer & Vink (2017) studied magnetospheric accretion in 56 Herbig Ae/Be stars and found that the behavior of Herbig Ae stars is similar to T Tauri stars, while Herbig Be stars earlier than B7/B8 are clearly different. The origin of the magnetic fields in Herbig Ae/Be stars is still under debate. Potential scenarios include the concentration of the interstellar magnetic field under magnetic flux conservation, pre-main-sequence dynamos during convective phases, mergers, or common envelope developments. The next step in this line of research will be a dedicated observing campaign to monitor about two dozen HAeBes over their rotation cycle.


1994 ◽  
Vol 140 ◽  
pp. 212-219
Author(s):  
Masahiko Hayashi

AbstractObservations of circumstellar disks with Nobeyama Millimeter Array (NMA) are presented for the following two topics. The first one is on the continued NMA survey for 13 complete samples of protostar candidates associated with Taurus molecular cloud. The observation confirmed the previous result that protostar candidates do not have detectable 3 mm continuum emission except for the two sources L1551-IRS5 and IRAS 04365+2535. This sets the upper limit to the circumstellar disk mass to be ~0.03 Mʘ for the protostar candidates. The disk mass for protostar candidates tends to be smaller than that around young T Tauri stars, suggesting that it may increase in the course of evolution from protostars into T Tauri stars. The second topic is on the detection of CO (J=1-0) emission toward GG Tau. The observations with the 45-m telescope and with NMA show strong evidence of the CO emission arising from a rotating disk with its size significantly extended with respect to the dust disk. Depletion of CO gas in the GG Tau disk is discussed.


1994 ◽  
Vol 140 ◽  
pp. 274-275
Author(s):  
Nagayoshi Ohashi ◽  
Ryohei Kawabe ◽  
Masahiko Hayashi ◽  
Masato Ishiguro

AbstractThe Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 were invisible protostars and 6 were youngest T Tauri stars. We observed the 98 GHz continuum and CS(J=2-1) line emissions simultaneously with spatial resolutions of 2.8”- 8.8” (360 AU-1,200 AU). Unresolved continuum emission was detected from 5 of 6 T Tauri stars and 2 of 13 protostar candidates. The continuum emission arose from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability for the 98 GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.


2007 ◽  
Vol 3 (S243) ◽  
pp. 1-12 ◽  
Author(s):  
Claude Bertout

AbstractAccretion and magnetic fields play major roles in several of the many models put forward to explain the properties of T Tauri stars since their discovery by Alfred Joy in the 1940s. Early investigators already recognized in the 1950s that a source of energy external to the star was needed to account for the emission properties of these stars in the optical range.The opening of new spectral windows from the infrared to the ultraviolet in the 1970s and 1980s showed that the excess emission of T Tauri stars and related objects extends into all wavelength domains, while evidence of outflow and/or infall in their circumstellar medium was accumulating.Although the disk hypothesis had been put forward by Merle Walker as early as 1972 to explain properties of YY Orionis stars and although Lynden-Bell and Pringle worked out the accretion disk model and applied it specifically to T Tauri stars in 1974, the prevailing model for young stellar objects until the mid-1980s assumed that they experienced extreme solar-type activity. It then took until the late 1980s before the indirect evidence of disks presented by several teams of researchers became so compelling that a paradigm shift occurred, leading to the current consensual picture.I briefly review the various models proposed for explaining the properties of young stellar objects, from their discovery to the direct observations of circumstellar disks that have so elegantly confirmed the nature of young stars. I will go on to discuss more modern issues concerning their accretion disk properties and conclude with some results obtained in a recent attempt to better understand the evolution of Taurus-Auriga young stellar objects.


2004 ◽  
Vol 128 (3) ◽  
pp. 1294-1318 ◽  
Author(s):  
Nuria Calvet ◽  
James Muzerolle ◽  
César Briceño ◽  
Jesus Hernández ◽  
Lee Hartmann ◽  
...  

2019 ◽  
Vol 201 ◽  
pp. 09004
Author(s):  
Sergey Khaibrakhmanov ◽  
Alexander Dudorov

Magneto-gas-dynamic (MGD) outflows from the accretion disks of T Tauri stars with fossil large-scale magnetic fileld are investigated. We consider two mechanisms of the outflows: rise of the magnetic flux tubes (MFT) formed in the regions of efficient generation of the toroidal magnetic fileld in the disk due to Parker instability, and acceleration of particles in the current layer formed near the boundary between stellar magnetosphere and the accretion disk. Structure of the disk is calculated using our MGD model of the accretion disks. We simulate dynamics of the MFT in frame of slender flux tube approximation taking into account aerodynamic and turbulent drags, and radiative heat exchange with external gas. Particle acceleration in the current layer is investigated on the basis of Sweet-Parker model of magnetic reconnection. Our calculations show that the MFT can accelerate to velocities up to 50 km s-1 causing periodic outflows from the accretion disks. Estimations of the particle acceleration in the current layer are applied to interpret high-speed jets and X-rays observed in T Tauri stars with the accretion disks.


Sign in / Sign up

Export Citation Format

Share Document