herbig ae stars
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 4)

H-INDEX

23
(FIVE YEARS 2)

2020 ◽  
Vol 635 ◽  
pp. A94 ◽  
Author(s):  
E. Di Folco ◽  
J. Péricaud ◽  
A. Dutrey ◽  
J.-C. Augereau ◽  
E. Chapillon ◽  
...  

Context. The study of gas-rich debris discs is fundamental to characterising the transition between protoplanetary discs and debris discs. Aims. We determine the physical parameters of the brightest gas-rich debris disc orbiting HD 141569A. Methods. We analyse images from the NOrthern Extended Millimeter Array (NOEMA)1 and the Atacama Large Millimeter/ submillimeter Array (ALMA) in 12CO, 13CO J = 2 → 1, and 13CO J = 1 → 0 transitions. We incorporate ALMA archival data of the 12CO J = 3 → 2 transition and present continuum maps at 0.87, 1.3, and 2.8 mm. We use simple parametric laws with the Diskfit code and MCMC exploration to characterise the gas disc parameters and report a first attempt to characterise its chemical content with IRAM-30 m. Results. The continuum emission is equally shared between a compact (≲50 au) and a smooth, extended dust component (~350 au). Large millimetre grains seem to dominate the inner regions, while the dust spectral index is marginally larger in the outer region. The 12CO is optically thick, while 13CO is optically thin with τ13CO ~ 0.15 (C18O is not detected). The 13CO surface density is constrained to be one order of magnitude smaller than around younger Herbig Ae stars, and we derive a gas mass M12CO = 10−1M⊕. We confirm the presence of a small CO cavity (RCO = 17 ± 3 au), and find a possibly larger radius for the optically thin 13CO J = 2 → 1 transition (35 ± 5 au). We show that the observed CO brightness asymmetry is coincident with the complex ring structures discovered with VLT/SPHERE in the inner 90 au. The 12CO temperature T0(100 au) ~ 30 K is lower than expected for a Herbig A0 star, and could be indicative of subthermal excitation. Conclusions. With the largest amount of dust and gas among hybrid discs, HD 141569A shows coincident characteristics of both protoplanetary discs (central regions), and debris discs at large distance. Together with its morphological characteristics and young age, it appears to be a good candidate to witness the transient phase of gas dissipation, with an apparently large gas-to-dust ratio (G∕D > 100) favouring a faster evolution of dust grains.


2019 ◽  
Vol 631 ◽  
pp. A133 ◽  
Author(s):  
Arthur D. Bosman ◽  
Andrea Banzatti ◽  
Simon Bruderer ◽  
Alexander G. G. M. Tielens ◽  
Geoffrey A. Blake ◽  
...  

Context. CO rovibrational lines are efficient probes of warm molecular gas and can give unique insights into the inner 10 AU of proto-planetary disks, effectively complementing ALMA observations. Recent studies find a relation between the ratio of lines originating from the second and first vibrationally excited state, denoted as v2∕v1, and the Keplerian velocity or emitting radius of CO. Counterintuitively, in disks around Herbig Ae stars the vibrational excitation is low when CO lines come from close to the star, and high when lines only probe gas at large radii (more than 5 AU). The v2∕v1 ratio is also counterintuitively anti-correlated with the near-infrared (NIR) excess, which probes hot and warm dust in the inner disk. Aims. We aim to find explanations for the observed trends between CO vibrational ratio, emitting radii and NIR excess, and to identify their implications in terms of the physical and chemical structure of inner disks around Herbig stars. Methods. First, slab model explorations in local thermal equilibrium (LTE) and non-LTE are used to identify the essential parameter space regions that can produce the observed CO emission. Second, we explore a grid of thermo-chemical models using the DALI code, varying gas-to-dust ratio and inner disk radius. Line flux, line ratios, and emitting radii are extracted from the simulated lines in the same way as the observations and directly compared to the data. Results. Broad CO lines with low vibrational ratios are best explained by a warm (400–1300 K) inner disk surface with gas-to-dust ratios below 1000 (NCO < 1018 cm−2); no CO is detected within or at the inner dust rim, due to dissociation at high temperatures. In contrast, explaining the narrow lines with high vibrational ratios requires an inner cavity of a least 5 AU in both dust and gas, followed by a cool (100–300 K) molecular gas reservoir with gas-to-dust ratios greater than 10 000 (NCO > 1018 cm−2) at the cavity wall. In all cases, the CO gas must be close to thermalization with the dust (Tgas ~ Tdust). Conclusions. The high gas-to-dust ratios needed to explain high v2∕v1 in narrow CO lines for a subset of group I disks can be naturally interpreted as due to the dust traps that are proposed to explain millimeter dust cavities. The dust trap and the low gas surface density inside the cavity are consistent with the presence of one or more massive planets. The difference between group I disks with low and high NIR excess can be explained by gap opening mechanisms that do or do not create an efficient dust trap, respectively. The broad lines seen in most group II objects indicate a very flat disk in addition to inner disk substructures within 10 AU that can be related to the substructures recently observed with ALMA. We provide simulated ELT-METIS images to directly test these scenarios in the future.


2019 ◽  
Vol 625 ◽  
pp. A13 ◽  
Author(s):  
T. Yu. Magakian ◽  
T. A. Movsessian ◽  
H. R. Andreasyan ◽  
M. H. Gevorgyan

Aims. Young double star V1318 Cyg, which is associated with a small isolated star-forming region around HAeBe star BD+40°4124, has very unusual photometric and spectral behavior. We present results of photometric and spectroscopic observations in the optical range. Methods. We carried out BVRI CCD photometric observations of V1318 Cyg from 2015 Sept. to 2017 July. For the same period we acquired medium- and low-resolution spectra. Observations were performed with the 2.6 m telescope of the Byurakan observatory. We also analyzed the images of this field in IPHAS and other surveys. Results. We analyze the historical light curve for V1318 Cyg and demonstrate that the southern component, V1318 Cyg S, after being rather bright in the 1970s (V ∼ 14 mag) started to lower its brightness and in 1990 became practically invisible in the optical. After its reappearance in the second half of the 1990s the star started to become very slowly brighter. Between 2006 and 2010 V1318 Cyg S started brightening more quickly, and in 2015 had become brighter by more than five magnitudes in visible light. Since this time V1318 Cyg S has remained at this maximum. Its spectrum shows little variability and consists of a mixture of emission and absorption lines, which has allowed for estimates of its spectral type as early Ae, with obvious evidence of matter outflow. We derive its current AV ≈ 7.2 and L = 750 L⊙ thus confirming that V1318 Cyg S should belong to the Herbig Ae stars, making it, along with BD+40°4124 and V1686 Cyg, the third luminous young star in the group. It is very probable that we observe V1318 Cyg S near the pole and that the inclination of its dense and slow (≈100 km s−1) outflow is low. Conclusions. The unusual variability and other features of V1318 Cyg S make it difficult to classify this star among known types of eruptive young stars. It could be an extreme, higher-mass example of an EXor, or an object of intermediate class between EXors and FUors, like V1647 Ori.


2018 ◽  
Vol 869 (2) ◽  
pp. 164 ◽  
Author(s):  
Benjamin R. Setterholm ◽  
John D. Monnier ◽  
Claire L. Davies ◽  
Alexander Kreplin ◽  
Stefan Kraus ◽  
...  
Keyword(s):  

2018 ◽  
Vol 620 ◽  
pp. A128 ◽  
Author(s):  
M. Vioque ◽  
R. D. Oudmaijer ◽  
D. Baines ◽  
I. Mendigutía ◽  
R. Pérez-Martínez

Aims. We use Gaia Data Release 2 (DR2) to place 252 Herbig Ae/Be stars in the Hertzsprung–Russell diagram and investigate their characteristics and properties. Methods. For all known Herbig Ae/Be stars with parallaxes in Gaia DR2, we collected their atmospheric parameters and photometric and extinction values from the literature. To these data we added near-infrared and mid-infrared photometry, and collected Hα emission line properties such as equivalent widths and line profiles, and their binarity status. In addition, we developed a photometric variability indicator from Gaia’s DR2 information. Results. We provide masses, ages, luminosities, distances, photometric variabilities and IR excesses homogeneously derived for the most complete sample of Herbig Ae/Be stars to date. We find that high-mass stars have a much smaller IR excess and have much lower optical variabilities compared to lower-mass stars, with the break at around 7 M⊙. Hα emission is generally correlated with IR excess, with the correlation being stronger for IR emission at wavelengths tracing the hot dust closest to the star. The variability indicator as developed by us shows that ∼25% of all Herbig Ae/Be stars are strongly variable. We observe that the strongly variable objects display doubly peaked Hα line profiles, indicating an edge-on disk. Conclusions. The fraction of strongly variable Herbig Ae stars is close to that found for A-type UX Ori stars. It had been suggested that this variability is in most cases due to asymmetric dusty disk structures seen edge-on. The observation here is in strong support of this hypothesis. Finally, the difference in dust properties occurs at 7 M⊙, while various properties traced at UV/optical wavelengths differ at a lower mass, 3 M⊙. The latter has been linked to different accretion mechanisms at work, whereas the differing IR properties and photometric variabilities are related to different or differently acting (dust-)disk-dispersal mechanisms.


2018 ◽  
Vol 14 (S345) ◽  
pp. 128-131
Author(s):  
József Varga ◽  
Péter Ábrahám ◽  
Lei Chen ◽  
Thorsten Ratzka ◽  
K. É. Gabányi ◽  
...  

AbstractWe present our results from a mid-infrared interferometric survey targeted at the planet-forming region in the circumstellar disks around low- and intermediate-mass young stars. Our sample consists of 82 objects, including T Tauri stars, Herbig Ae stars, and young eruptive stars. Our main results are: 1) Disks around T Tauri stars are similar to those around Herbig Ae stars, but are relatively more extended once we account for stellar luminosity. 2) From the distribution of the sizes of the mid-infrared emitting region we find that inner dusty disk holes may be present in roughly half of the sample. 3) Our analysis of the silicate spectral feature reveals that the dust in the inner ~1 au region of disks is generally more processed than that in the outer regions. 4) The dust in the disks of T Tauri stars typically show weaker silicate emission in the N band spectrum, compared to Herbig Ae stars, which may indicate a general difference in the disk structure. Our data products are available at VizieR, and at the following web page: http://konkoly.hu/MIDI_atlas.


2018 ◽  
Vol 14 (A30) ◽  
pp. 133-133
Author(s):  
Swetlana Hubrig ◽  
Fiorella Castelli ◽  
Silva P. Järvinen

AbstractAK Sco is an SB2 system formed by two nearly identical Herbig Ae stars, with Teff = 6500K and log g = 4.5, surrounded by a circumbinary disk. This actively accreting system is of special interest among the pre-main-sequence binaries because of its prominent ultraviolet excess and the high eccentricity of its orbit. Moreover, recent spectropolarimetric observations using HARPSpol indicate the presence of a weak magnetic field in the secondary component (Järvinen et al. 2018). An abundance analysis of both components has shown that all elements have a solar abundance in the two stars, except for Li and Ba. These elements are enhanced by 2.2 and 0.5 dex, respectively, in the A component and by 2.4 and 0.5 dex, respectively, in the B component.


2018 ◽  
Vol 14 (A30) ◽  
pp. 123-123
Author(s):  
Markus Schöller ◽  
Swetlana Hubrig

AbstractModels of magnetically driven accretion reproduce many observational properties of T Tauri stars. For the more massive Herbig Ae/Be stars, the corresponding picture has been questioned lately, in part driven by the fact that their magnetic fields are typically one order of magnitude weaker. Indeed, the search for magnetic fields in Herbig Ae/Be stars has been quite time consuming, with a detection rate of about 10% (e.g. Alecian et al. 2008), also limited by the current potential to detect weak magnetic fields. Over the last two decades, magnetic fields were found in about twenty objects (Hubrig et al. 2015) and for only two Herbig Ae/Be stars was the magnetic field geometry constrained. Ababakr, Oudmaijer & Vink (2017) studied magnetospheric accretion in 56 Herbig Ae/Be stars and found that the behavior of Herbig Ae stars is similar to T Tauri stars, while Herbig Be stars earlier than B7/B8 are clearly different. The origin of the magnetic fields in Herbig Ae/Be stars is still under debate. Potential scenarios include the concentration of the interstellar magnetic field under magnetic flux conservation, pre-main-sequence dynamos during convective phases, mergers, or common envelope developments. The next step in this line of research will be a dedicated observing campaign to monitor about two dozen HAeBes over their rotation cycle.


2018 ◽  
Vol 14 (A30) ◽  
pp. 134-134
Author(s):  
S. P. Järvinen ◽  
S. Hubrig ◽  
M. Schöller ◽  
I. Ilyin

AbstractHerbig Ae/Be-type stars are analogs of T Tauri stars at higher masses. Since the confirmation of magnetospheric accretion using Balmer and sodium line profiles in the Herbig Ae star UX Ori, a number of magnetic studies have been attempted, indicating that about 20 Herbig Ae/Be stars likely have globally organized magnetic fields. The low detection rate of magnetic fields in Herbig Ae stars can be explained by the weakness of these fields and rather large measurement uncertainties. The obtained density distribution of the root mean square longitudinal magnetic field values revealed that only a few stars have magnetic fields stronger than 200 G, and half of the sample possesses magnetic fields of about 100 G or less. We report on the results of our analysis of a sample of presumably single Herbig Ae/Be stars based on recent observations obtained with HARPSpol attached to ESO’s 3.6m telescope. Knowledge of the magnetic field structure combined with the determination of the chemical composition are indispensable to constrain theories on star formation and magnetospheric accretion in intermediate-mass stars. As of today, magnetic phase curves have been obtained only for two Herbig Ae/Be stars, HD 101412 and V380 Ori.


Sign in / Sign up

Export Citation Format

Share Document