scholarly journals The EBLM Project

2019 ◽  
Vol 625 ◽  
pp. A150 ◽  
Author(s):  
Alexander von Boetticher ◽  
Amaury H. M. J. Triaud ◽  
Didier Queloz ◽  
Sam Gill ◽  
Pierre F. L. Maxted ◽  
...  

Measurements of the physical properties of stars at the lower end of the main sequence are scarce. In this context we report masses, radii and surface gravities of ten very-low-mass stars in eclipsing binary systems, with orbital periods of the order of several days. The objects probe the stellar mass-radius relation in the fully convective regime, M⋆ ≲ 0.35 M⊙, down to the hydrogen burning mass-limit, MHB ∼ 0.07 M⊙. The stars were detected by the WASP survey for transiting extra-solar planets, as low-mass, eclipsing companions orbiting more massive, F- and G-type host stars. We use eclipse observations of the host stars, performed with the TRAPPIST, Leonhard Euler and SPECULOOS telescopes, and radial velocities of the host stars obtained with the CORALIE spectrograph, to determine the physical properties of the low-mass companions. Surface gravities of the low-mass companions are derived from the eclipse and orbital parameters of each system. Spectroscopic measurements of the host star effective temperature and metallicity are used to infer the host star mass and age from stellar evolution models for solar-type stars. Masses and radii of the low-mass companions are then derived from the eclipse and orbital parameters of the binary systems. The objects are compared to stellar evolution models for low-mass stars, to test for an effect of the stellar metallicity and orbital period on the radius of low-mass stars in close binary systems. Measurements are found to be in good agreement with stellar evolution models; a systematic inflation of the radius of low-mass stars with respect to model predictions is limited to 1.6 ± 1.2%, in the fully convective low-mass regime. The sample of ten objects indicates a scaling of the radius of low-mass stars with the host star metallicity. No correlation between stellar radii and the orbital periods of the binary systems is determined. A combined analysis with thirteen comparable objects from the literature is consistent with this result.

1987 ◽  
Vol 125 ◽  
pp. 281-303
Author(s):  
Ken'ichi Nomoto

The presupernova evolution of stars that form semi-degenerate or strongly degenerate O+Ne+Mg cores is discussed. For the 10–13 M⊙ stars, behavior of off-center neon flashes is crucial. The 8–10 M⊙ stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. We also examine the conditions for which neutron stars form from accretion-induced collapse of white dwarfs in close binary systems.


2005 ◽  
Vol 326 (10) ◽  
pp. 944-947 ◽  
Author(s):  
R. D. Jeffries ◽  
P. F. L. Maxted

Author(s):  
K Gazeas ◽  
S Zola ◽  
A Liakos ◽  
B Zakrzewski ◽  
S M Rucinski ◽  
...  

Abstract This paper presents the results of a combined spectroscopic and photometric study of 20 contact binary systems: HV Aqr, OO Aql, FI Boo, TX Cnc, OT Cnc, EE Cet, RW Com, KR Com, V401 Cyg, V345 Gem, AK Her, V502 Oph, V566 Oph, V2612 Oph, V1363 Ori, V351 Peg, V357 Peg, Y Sex, V1123 Tau and W UMa, which was conducted in the frame of the W UMa Project. Together with 51 already covered by the project and an additional 67 in the existing literature, these systems bring the total number of contact binaries with known combined spectroscopic and photometric solutions to 138. It was found that mass, radius and luminosity of the components follow certain relations along the MS and new empirical power relations are extracted. We found that 30 per cent of the systems in the current sample show extreme values in their parameters, expressed in their mass ratio or fill-out factor. This study shows that, among the contact binary systems studied, some have an extremely low mass ratio (q<0.1) or an ultra-short orbital period (Porb <0.25 d), which are expected to show evidence of mass transfer progress. The evolutionary status of these components is discussed with the aid of correlation diagrams and their physical and orbital parameters compared to those in the entire sample of known contact binaries. The existence of very short orbital periods confirms the very slow nature of the merging process, which seems to explain why their components still exist as MS stars in contact configurations even after several Gyr of evolution.


2019 ◽  
Vol 621 ◽  
pp. A22 ◽  
Author(s):  
E. J. Farrell ◽  
J. H. Groh ◽  
G. Meynet ◽  
R. Kudritzki ◽  
J. J. Eldridge ◽  
...  

A large fraction of massive stars evolve in interacting binary systems, which dramatically modifies the outcome of stellar evolution. We investigated the properties of blue supergiants in binary systems and whether they are suitable for extragalactic distance determinations using the flux-weighted gravity luminosity relationship (FGLR). This is a relationship between the absolute bolometric magnitude Mbol and the spectroscopically determined flux-weighted gravity gF = g/T4eff, where g is the surface gravity and Teff is the effective temperature. We computed a grid of binary stellar evolution models with MESA and use the v2.1 BPASS models to examine whether they are compatible with the relatively small scatter shown by the observed relationship. Our models have initial primary masses of 9–30 M⊙, initial orbital periods of 10–2511 days, mass ratio q = 0.9, and metallicity Z = 0.02. We find that the majority of primary stars that produce blue supergiant stages are consistent with the observed FGLR, with a small offset towards brighter bolometric magnitudes. In between 1%–24% of cases, binary evolution may produce blue supergiants after a mass transfer episode, that lie below the observed FGLR. A very small number of such stars have been found in extragalactic FGLR studies, suggesting that they may have evolved through binary interaction. Some models with shorter periods could resemble blue hypergiants and luminous blue variables. We used CMFGEN radiative transfer models to investigate the effects of unresolved secondaries on diagnostics for Teff and g, and the biases on the determination of interstellar reddening and Mbol. We find that the effects are small and within the observed scatter, but could lead to a small overestimate of the luminosity, of Teff and of g for extreme cases. We conclude that the observed FGLR can, in principle, be well reproduced by close binary evolution models. We outline directions for future work, including rotation and binary population synthesis techniques.


2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.


1974 ◽  
Vol 3 ◽  
pp. 89-107
Author(s):  
M. J. Rees

The discovery by Giacconi and his colleagues of variable X-ray sources in close binary systems certainly ranks as one of the highlights of astronomical research during the last 3 years. These remarkable objects have already been extensively studied, by optical and radio observations as well as in the X-ray band; and they seem likely to prove as significant and far-reaching in their implications as pulsars.The ‘Third Uhuru Catalogue’ (Giacconi et al., 1973a) contains about 160 sources, of which about 100 lie in our Galaxy. Their distribution over the sky (together with other arguments) suggests that these sources have luminosities of the general order 1036–1038 erg s−1, and that their typical distances are ˜ 10kpc. These galactic sources generally display rapid variability. Little else is known about most of them, but they are probably of the same general class as systems such as Her X1, Cen X3, Cyg X1 and Cyg X3. These sources have been investigated in detail, and in all cases one infers a system where the X-ray source is orbiting around a relatively ordinary star. Six sources have been optically identified, and there are some others whose binary nature is established by the occurrence of an X-ray eclipse. Orbital periods range from 4.8 h (Cyg X3) up to ˜ 10 days.


1998 ◽  
Vol 11 (1) ◽  
pp. 371-371
Author(s):  
S. Narusawa ◽  
A. Yamasaki ◽  
Y. Nakamura

Although the evolution of binary systems has been qualitatively interpreted with the evolutionary scenario, the quantitative interpretation of any observed system is still unsatisfactory due to the difficulty of the quantitative treatment of mass and angular momentum transfer/loss. To reach a true understanding of the evolution of binary systems, we have to accumulate more observational evidence. So far, we have observed several binaries that are short-period and noncontact, and found the existence of extremely small-mass systems. In the present paper, we study another short-period (P=0.659d), noncontact, eclipsing binary system, V392 Ori. We have made photometric and spectroscopic observations of V392 Ori. The light curves are found to vary, suggesting the existence of circumstellar matter around the system. Combining the photometric and spectroscopic results, we obtain parameters describing the system; we find the mass of the primary component is only 0.6Mʘ- undermassive for its spectral and luminosity class A5V, suggesting that a considerable amount of its original mass has been lost from the system during the course of evolution. The low-mass problem is very important for investigation of the evolution of close binary systems: largemass loss within and/or after the main-sequence will have a significant influence on the future evolution of binary systems.


2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


2018 ◽  
Vol 615 ◽  
pp. A177 ◽  
Author(s):  
A.-L. Maire ◽  
L. Rodet ◽  
C. Lazzoni ◽  
A. Boccaletti ◽  
W. Brandner ◽  
...  

Context. A low-mass brown dwarf has recently been imaged around HR 2562 (HD 50571), a star hosting a debris disk resolved in the far infrared. Interestingly, the companion location is compatible with an orbit coplanar with the disk and interior to the debris belt. This feature makes the system a valuable laboratory to analyze the formation of substellar companions in a circumstellar disk and potential disk-companion dynamical interactions. Aims. We aim to further characterize the orbital motion of HR 2562 B and its interactions with the host star debris disk. Methods. We performed a monitoring of the system over ~10 months in 2016 and 2017 with the VLT/SPHERE exoplanet imager. Results. We confirm that the companion is comoving with the star and detect for the first time an orbital motion at high significance, with a current orbital motion projected in the plane of the sky of 25 mas (~0.85 au) per year. No orbital curvature is seen in the measurements. An orbital fit of the SPHERE and literature astrometry of the companion without priors on the orbital plane clearly indicates that its orbit is (quasi-)coplanar with the disk. To further constrain the other orbital parameters, we used empirical laws for a companion chaotic zone validated by N-body simulations to test the orbital solutions that are compatible with the estimated disk cavity size. Non-zero eccentricities (>0.15) are allowed for orbital periods shorter than 100 yr, while only moderate eccentricities up to ~0.3 for orbital periods longer than 200 yr are compatible with the disk observations. A comparison of synthetic Herschel images to the real data does not allow us to constrain the upper eccentricity of the companion.


Sign in / Sign up

Export Citation Format

Share Document