scholarly journals 2D chemical evolution model: The impact of Galactic disc asymmetries on azimuthal chemical abundance variations

2019 ◽  
Vol 628 ◽  
pp. A38 ◽  
Author(s):  
E. Spitoni ◽  
G. Cescutti ◽  
I. Minchev ◽  
F. Matteucci ◽  
V. Silva Aguirre ◽  
...  

Context. Galactic disc chemical evolution models generally ignore azimuthal surface density variation that can introduce chemical abundance azimuthal gradients. Recent observations, however, have revealed chemical abundance changes with azimuth in the gas and stellar components of both the Milky Way and external galaxies. Aims. Our aim is to quantify the effects of spiral arm density fluctuations on the azimuthal variations of the oxygen and iron abundances in disc galaxies. Methods. We developed a new 2D Galactic disc chemical evolution model that is capable of following not just radial but also azimuthal inhomogeneities. Results. The density fluctuations resulting from a Milky Way-like N-body disc formation simulation produce azimuthal variations in the oxygen abundance gradients of the order of 0.1 dex. Moreover, the azimuthal variations are more evident in the outer Galactic regions, which is in agreement with the most recent observations in external galaxies. Using a simple analytical model, we show that the largest fluctuations with azimuth result near the spiral structure co-rotation resonance where the relative speed between the spiral and gaseous disc is the slowest. Conclusion. We provide a new 2D chemical evolution model capable of following azimuthal density variations. Density fluctuations extracted from a Milky Way-like dynamical model lead to a scatter in the azimuthal variations of the oxygen abundance gradient, which is in agreement with observations in external galaxies. We interpret the presence of azimuthal scatter at all radii by the presence of multiple spiral modes moving at different pattern speeds, as found in both observations and numerical simulations.

Author(s):  
E. Spitoni ◽  
K. Verma ◽  
V. Silva Aguirre ◽  
F. Vincenzo ◽  
F. Matteucci ◽  
...  

2021 ◽  
Vol 503 (3) ◽  
pp. 3216-3231
Author(s):  
Marco Palla

ABSTRACT We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding to different white dwarf progenitors (near-Chandrasekar and sub-Chandrasekar) taken from the literature. We adopt a fixed delay time distribution function for Type Ia SNe, in order to avoid degeneracies in the analysis of the different nucleosynthesis channels. We also combine yields for different Type Ia SN progenitors in order to test the contribution to chemical evolution of different Type Ia SN channels. The results of the models are compared with recent LTE and NLTE observational data. We find that ‘classical’ W7 and WDD2 models produce Fe masses and [α/Fe] abundance patterns similar to more recent and physical near-Chandrasekar and sub-Chandrasekar models. For Fe-peak elements, we find that the results strongly depend either on the white dwarf explosion mechanism (deflagration-to-detonation, pure deflagration, double detonation) or on the initial white dwarf conditions (central density, explosion pattern). The comparison of chemical evolution model results with observations suggests that a combination of near-Chandrasekar and sub-Chandrasekar yields is necessary to reproduce the data of V, Cr, Mn and Ni, with different fractions depending on the adopted massive stars stellar yields. This comparison also suggests that NLTE and singly ionized abundances should be definitely preferred when dealing with most of Fe-peak elements at low metallicity.


2019 ◽  
Vol 14 (S351) ◽  
pp. 19-23
Author(s):  
David Yong

AbstractObservations of stellar chemical compositions enable us to identify connections between globular clusters and stellar populations in the Milky Way. In particular, chemical abundance ratios provide detailed insight into the chemical enrichment histories of star clusters and the field populations. For some elements, there are striking differences between field and cluster stars which reflect different nucleosynthetic processes and/or chemical evolution. The goal of this talk was to provide an overview of similarities and differences in chemical compositions between globular clusters and the Milky Way as well as highlighting a few areas for further examination.


2016 ◽  
Vol 109 ◽  
pp. 02002 ◽  
Author(s):  
Zhen Yuan ◽  
Yong-Zhong Qian ◽  
Yi Peng Jing

2017 ◽  
Vol 605 ◽  
pp. A59 ◽  
Author(s):  
Jan Rybizki ◽  
Andreas Just ◽  
Hans-Walter Rix

2000 ◽  
Vol 198 ◽  
pp. 563-564
Author(s):  
Andreu Alibés ◽  
Javier Labay ◽  
Ramon Canal

We present the Light Element Evolution resulting from our new Chemical Evolution model. The LiBeB evolution is correctly fitted by taking into account several sources: Big Bang, Galactic Cosmic Ray Nucleosynthesis, the ν-process, novae and AGB and C-stars.


2009 ◽  
Vol 5 (H15) ◽  
pp. 281-281
Author(s):  
Antonio Pipino

AbstractI present predictions from a chemical evolution model for a self-consistent study of optical (i.e., stellar) and X-ray (i.e., gas) properties of present-day elliptical galaxies. Detailed cooling and heating processes in the interstellar medium are taken into account and allow a reliable modelling of the SN-driven galactic wind. The model simultaneously reproduces the mass-metallicity, colour-magnitude, LX - LB and LX - T relations, and the observed trend of [Mg/Fe] with σ. The "iron discrepancy" can be solved by taking into account the dust presence.


2004 ◽  
Vol 21 (2) ◽  
pp. 242-247
Author(s):  
Takuji Tsujimoto ◽  
Toshikazu Shigeyama

AbstractWe describe the star formation histories of the Milky Way dwarf spheroidal galaxy and the globular cluster ω Centauri in terms of an inhomogeneous chemical evolution model developed for the Galactic halo. The observed abundance trends seen in neutron-capture elements together with α-elements constrain our models to shed light on the histories of these nearby galaxies and ω Cen. The origin of low-α stars and a new picture of the globular cluster formation scenario induced by cloud–cloud collisions are also presented.


Sign in / Sign up

Export Citation Format

Share Document