scholarly journals VLA cm-wave survey of young stellar objects in the Oph A cluster: constraining extreme UV- and X-ray-driven disk photoevaporation

2019 ◽  
Vol 631 ◽  
pp. A58 ◽  
Author(s):  
A. Coutens ◽  
H. B. Liu ◽  
I. Jiménez-Serra ◽  
T. L. Bourke ◽  
J. Forbrich ◽  
...  

Observations of young stellar objects (YSOs) in centimeter bands can probe the continuum emission from growing dust grains, ionized winds, and magnetospheric activity that are intimately connected to the evolution of protoplanetary disks and the formation of planets. We carried out sensitive continuum observations toward the Ophiuchus A star-forming region, using the Karl G. Jansky Very Large Array (VLA) at 10 GHz over a field-of-view of 6′ and with a spatial resolution of θmaj ×θmin ~ 0.′′4 × 0.′′2. We achieved a 5 μJy beam−1 rms noise level at the center of our mosaic field of view. Among the 18 sources we detected, 16 were YSOs (three Class 0, five Class I, six Class II, and two Class III) and two were extragalactic candidates. We find that thermal dust emission generally contributed less than 30% of the emission at 10 GHz. The radio emission is dominated by other types of emission, such as gyro-synchrotron radiation from active magnetospheres, free–free emission from thermal jets, free–free emission from the outflowing photoevaporated disk material, and synchrotron emission from accelerated cosmic-rays in jet or protostellar surface shocks. These different types of emission could not be clearly disentangled. Our non-detections for Class II/III disks suggest that extreme UV-driven photoevaporation is insufficient to explain disk dispersal, assuming that the contribution of UV photoevaporating stellar winds to radio flux does not evolve over time. The sensitivity of our data cannot exclude photoevaporation due to the role of X-ray photons as an efficient mechanism for disk dispersal. Deeper surveys using the Square Kilometre Array (SKA) will have the capacity to provide significant constraints to disk photoevaporation.

2006 ◽  
Vol 2 (S237) ◽  
pp. 40-46
Author(s):  
Mónica Rubio

AbstractMultiwavelengths studies of massive star formation regions in the LMC and SMC reveal that a second generation of stars is being formed in dense molecular clouds located in the surroundings of the massive clusters. These dense molecular clouds have survived the action of massive star UV radiation fields and winds and they appear as compact dense H2 knots in regions of weak CO emission. Alternatively, we have found that large molecular clouds, probably remnants of the parental giant molecular clouds where the first generation of stars were formed, are suffering the interaction of the winds and UV radiation field in their surfaces in the direction of the central massive cluster or massive stars. These molecular regions show 1.2 mm continuum emission form cold dust and they show embedded IR sources as determined from deep ground base JHKs imaging. The distribution of young IR sources as determined from their Mid IR colors obtained by SPITZER concentrate in the maxima of CO and dust emission. IR spectroscopy of the embedded sources with high IR excess confirm their nature as massive young stellar objects (MYSO's). Our results are suggestive of contagious star formation where triggering and induced star formation could be taking place.


2019 ◽  
Vol 491 (4) ◽  
pp. 5035-5055 ◽  
Author(s):  
Darryl J Sergison ◽  
Tim Naylor ◽  
S P Littlefair ◽  
Cameron P M Bell ◽  
C D H Williams

ABSTRACT We present an i-band photometric study of over 800 young stellar objects in the OB association Cep OB3b, which samples time-scales from one minute to 10 yr. Using structure functions we show that on all time-scales (τ) there is a monotonic decrease in variability from Class I to Class II through the transition disc (TD) systems to Class III, i.e. the more evolved systems are less variable. The Class Is show an approximately power-law increase (τ0.8) in variability from time-scales of a few minutes to 10 yr. The Class II, TDs, and Class III systems show a qualitatively different behaviour with most showing a power-law increase in variability up to a time-scale corresponding to the rotational period of the star, with little additional variability beyond that time-scale. However, about a third of the Class IIs shows lower overall variability, but their variability is still increasing at 10 yr. This behaviour can be explained if all Class IIs have two primary components to their variability. The first is an underlying roughly power-law variability spectrum, which evidence from the infrared suggests is driven by accretion rate changes. The second component is approximately sinusoidal and results from the rotation of the star. We suggest that the systems with dominant longer time-scale variability have a smaller rotational modulation either because they are seen at low inclinations or have more complex magnetic field geometries. We derive a new way of calculating structure functions for large simulated data sets (the ‘fast structure function’), based on fast Fourier transforms.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yoshiaki Sofue

Fine structure of the density distribution in giant molecular clouds (GMCs) around W43 (G31+00+90 km s−1at ∼5.5 kpc) was analyzed using the FUGIN* CO-line survey at high-angular (20”∼0.5 pc) and velocity (1.3 km s−1) resolutions (*Four-receiver-system Unbiased Galactic Imaging survey with the Nobeyama 45-m telescope). The GMCs show highly turbulent structures, and the eddies are found to exhibit spherical bubble morphology appearing in narrow ranges of velocity channels. The bubbles are dark in radio continuum emission, unlike usual supernova remnants (SNR) or HII regions, and in infrared dust emission, unlike molecular bubbles around young stellar objects. The CO bubbles are interpreted as due to fully evolved buried SNRs in molecular clouds after rapid exhaustion of the released energy in dense molecular clouds. Then, the CO bubbles may be a direct evidence for exciting and maintaining the turbulence in GMCs by SN origin. Search for CO bubbles as “dark SNRs” (dSNR) will have implication to estimate the supernova rate more accurately, and hence the star formation activity in the Milky Way.


2021 ◽  
Vol 923 (2) ◽  
pp. 263
Author(s):  
A. P. M. Towner ◽  
C. L. Brogan ◽  
T. R. Hunter ◽  
C. J. Cyganowski

Abstract We have observed a sample of nine Extended Green Objects (EGOs) at 1.3 and 5 cm with the Very Large Array (VLA) with subarcsecond resolution and ∼7–14 μJy beam−1-sensitivities in order to characterize centimeter continuum emission as it first appears in these massive protoclusters. We find an EGO-associated continu um emission—within 1″ of the extended 4.5 μm emission—in every field, which is typically faint (order 101–102 μJy) and compact (unresolved at 0″.3–0″.5). The derived spectral indices of our 36 total detections are consistent with a wide array of physical processes, including both non-thermal (19% of detections) and thermal free–free processes (e.g., ionized jets and compact H ii regions, 78% of sample) and warm dust (1 source). We also find an EGO-associated 6.7 GHz CH3OH and 22 GHz H2O maser emission in 100% of the sample and a NH3 (3,3) masers in ∼45%; we do not detect any NH3 (6,6) masers at ∼5.6 mJy beam−1 sensitivity. We find statistically-significant correlations between L radio and L bol at two physical scales and three frequencies, consistent with thermal emission from ionized jets, but no correlation between L H 2 O and L radio for our sample. From these data, we conclude that EGOs likely host multiple different centimeter continuum-producing processes simultaneously. Additionally, at our ∼1000 au resolution, we find that all EGOs except G18.89−0.47 contain 1 ∼ 2 massive sources based on the presence of CH3OH maser groups, which is consistent with our previous work suggesting that these are typical massive protoclusters, in which only one to a few of the young stellar objects are massive.


2021 ◽  
Vol 922 (1) ◽  
pp. 27
Author(s):  
Benjamin Kidder ◽  
Gregory Mace ◽  
Ricardo López-Valdivia ◽  
Kimberly Sokal ◽  
Victoria E. Catlett ◽  
...  

Abstract We present measurements of the H- and K-band veiling for 141 young stellar objects (YSOs) in the Taurus-Auriga star-forming region using high-resolution spectra from the Immersion Grating Near-Infrared Spectrometer. In addition to providing measurements of r H and r K , we produce low-resolution spectra of the excess emission across the H and K bands. We fit temperatures to the excess spectra of 46 members of our sample and measure near-infrared excess temperatures ranging from 1200–2200 K, with an average of 1575 ± 225 K. We compare the luminosity of the excess continuum emission in Class II and Class III YSOs and find that a number of Class III sources display a significant amount of excess flux in the near-infrared. We conclude that the mid-infrared SED slope, and therefore young stellar object classification, is a poor predictor of the amount of near-infrared veiling. If the veiling arises in thermal emission from dust, its presence implies a significant amount of remaining inner-disk (<1 au) material in these Class III sources. We also discuss the possibility that the veiling effects could result from massive photospheric spots, unresolved binary companions, or accretion emission. Six low-mass members of our sample contain a prominent feature in their H-band excess spectra that is consistent with veiling from cool photospheric spots.


2020 ◽  
Vol 501 (1) ◽  
pp. 1316-1335
Author(s):  
Zhe-Yu Daniel Lin ◽  
Chin-Fei Lee ◽  
Zhi-Yun Li ◽  
John J Tobin ◽  
Neal J Turner

ABSTRACT (Sub)millimetre dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in discs around young stellar objects. We propose a method to constrain the opacity κν in edge-on discs from a characteristic optical depth τ0,ν, the density ρ0, and radius R0 at the disc outer edge through κν = τ0,ν/(ρ0R0), where τ0,ν is inferred from the shape of the observed flux along the major axis, ρ0 from gravitational stability considerations, and R0 from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disc, which has high-resolution data in Atacama Large Millimetre/submillimetre Array (ALMA) bands 9, 7, 6, and 3 and Very Large Array Ka band (λ = 0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modelling is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of κν ≈ 1.9 × 10−2, 1.3 × 10−2, and 4.9 × 10−3 cm2 g−1 of gas and dust for ALMA bands 7, 6, and 3, respectively, with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription κλ = 2.3 × 10−2(1.3mm/λ) cm2 g−1 . We inferred a temperature of ∼45 K at the disc outer edge that increases radially inwards. It is well above the sublimation temperatures of ices such as CO and N2, which supports the notion that the disc chemistry cannot be completely inherited from the protostellar envelope.


2021 ◽  
Vol 162 (6) ◽  
pp. 279
Author(s):  
Steven M. Silverberg ◽  
Hans Moritz Günther ◽  
Jinyoung Serena Kim ◽  
David A. Principe ◽  
Scott J. Wolk

Abstract Empirically, the estimated lifetime of a typical protoplanetary disk is <5–10 Myr. However, the disk lifetimes required to produce a variety of observed exoplanetary systems may exceed this timescale. Some hypothesize that this inconsistency is due to estimating disk fractions at the cores of clusters, where radiation fields external to a star–disk system can photoevaporate the disk. To test this, we have observed a field on the western outskirts of the IC 1396 star-forming region with XMM-Newton to identify new Class III YSO cluster members. Our X-ray sample is complete for YSOs down to 1.8 M ⊙. We use a subset of these X-ray sources that have near- and mid-infrared counterparts to determine the disk fraction for this field. We find that the fraction of X-ray-detected cluster members that host disks in the field we observe is 17 − 7 + 10 % (1σ), comparable with the 29 − 3 + 4 % found in an adjacent field centered on the cometary globule IC 1396A. We reevaluate YSO identifications in the IC 1396A field using Gaia parallaxes compared to previous color-cut-only identifications, finding that incorporating independent distance measurements provides key additional constraints. Given the existence of at least one massive star producing an external radiation field in the cluster core, the lack of a statistically significant difference in disk fraction in each observed field suggests that disk lifetimes remain consistent as a function of distance from the cluster core.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2020 ◽  
Vol 493 (2) ◽  
pp. 2015-2041 ◽  
Author(s):  
B M Jones ◽  
G A Fuller ◽  
S L Breen ◽  
A Avison ◽  
J A Green ◽  
...  

ABSTRACT The Methanol MultiBeam survey (MMB) provides the most complete sample of Galactic massive young stellar objects (MYSOs) hosting 6.7 GHz class II methanol masers. We characterize the properties of these maser sources using dust emission detected by the Herschel Infrared Galactic Plane Survey (Hi-GAL) to assess their evolutionary state. Associating 731 (73 per cent) of MMB sources with compact emission at four Hi-GAL wavelengths, we derive clump properties and define the requirements of an MYSO to host a 6.7 GHz maser. The median far-infrared (FIR) mass and luminosity are 630 M⊙ and 2500 L⊙ for sources on the near side of Galactic centre and 3200 M⊙ and 10000 L⊙ for more distant sources. The median luminosity-to-mass ratio is similar for both at ∼4.2 L⊙  M⊙−1. We identify an apparent minimum 70 μm luminosity required to sustain a methanol maser of a given luminosity (with $L_{70} \propto L_{6.7}\, ^{0.6}$). The maser host clumps have higher mass and higher FIR luminosities than the general Galactic population of protostellar MYSOs. Using principal component analysis, we find 896 protostellar clumps satisfy the requirements to host a methanol maser but lack a detection in the MMB. Finding a 70 μm flux density deficiency in these objects, we favour the scenario in which these objects are evolved beyond the age where a luminous 6.7 GHz maser can be sustained. Finally, segregation by association with secondary maser species identifies evolutionary differences within the population of 6.7GHz sources.


Sign in / Sign up

Export Citation Format

Share Document