scholarly journals NLTE modelling of integrated light spectra

2019 ◽  
Vol 627 ◽  
pp. A40 ◽  
Author(s):  
P. Eitner ◽  
M. Bergemann ◽  
S. Larsen

Aims.We study the effects of non-local thermodynamic equilibrium (NLTE) on the abundance analysis of barium, magnesium, and manganese from integrated light spectroscopy, as typically applied to the analysis of extra-galactic star clusters and galaxies. In this paper, our reference object is a synthetic simple stellar population (SSP) representing a mono-metallicα-enhanced globular cluster with the metallicity [Fe/H] = −2.0 and the age of 11 Gyr.Methods.We used the MULTI2.3 program to compute LTE and NLTE equivalent widths of spectral lines of Mg I, Mn I, and Ba II ions, which are commonly used in abundance analyses of extra-galactic stellar populations. We used ATLAS12 model atmospheres for stellar parameters sampled from a model isochrone to represent individual stars in the model SSP. The NLTE and LTE equivalent widths calculated for the individual stars were combined to calculate the SSP NLTE corrections.Results.We find that the NLTE abundance corrections for the integrated light spectra of the metal-poor globular cluster are significant in many cases, and often exceed 0.1 dex. In particular, LTE abundances of Mn are consistently under-estimated by 0.3 dex for all optical lines of Mn I studied in this work. On the other hand, Ba II, and Mg I lines show a strong differential effect: the NLTE abundance corrections for the individual stars and integrated light spectra are close to zero for the low-excitation lines, but they amount to − 0.15 dex for the strong high-excitation lines. Our results emphasise the need to take NLTE effects into account in the analysis of spectra of individual stars and integrated light spectra of stellar populations.

1998 ◽  
Vol 11 (1) ◽  
pp. 571-571
Author(s):  
M. Haywood ◽  
J. Palasi ◽  
A. Gómez ◽  
L. Meillon Dasgal

The Hipparcos catalogue provides an accurate and extensive sampling of the solar neighbourhood HR diagram. The morphology of this diagram depends on selection criteria of the catalogue such as the limiting magnitude, angular separation and on the characteristics of the stellar populations near the sun (space density, metallicity, star formation rate, etc). Since the Hipparcos data are so accurate, one needs to model precisely the different selection bias and, at the same time, parametrize models of the galactic stellar populations with sufficient flexibility that as much information as possible can be grasped from the catalogue. Comparisons between our model and the Hipparcos catalogue will be presented elsewhere. Since the quantity of information contained in the Hipparcoscatalogue is so important, models ought to be complex, and external contraints, obtained prior to any general comparison with the model, are welcome. A major factor that influences the distribution of the stars in the HR diagram is the metallicity. For the late type stars, the metallicity distribution can be best studied by re-analysing a volume-limited sample of stars from the catalogue.


2009 ◽  
Vol 5 (S265) ◽  
pp. 344-345
Author(s):  
B. Barbuy ◽  
S. Ortolani ◽  
M. Zoccali ◽  
V. Hill ◽  
D. Minniti ◽  
...  

AbstractVery few abundance analyses of individual stars in metal-poor globular clusters in the galactic bulge are available. The main purpose of this study is to derive abundances in individual stars of such clusters, in order to establish their abundance pattern, trying to characterize the oldest bulge stellar populations.


2009 ◽  
Vol 5 (S262) ◽  
pp. 315-316
Author(s):  
Ana L. Chies-Santos ◽  
Søren S. Larsen

Globular cluster (GC) systems are powerful probes to study the evolutionary histories of galaxies, being tracers of major star fomation episodes (Brodie & Strader 2006). They are found around all major galaxies and are easy to see far beyond the local group. Age dating GCs therefore helps pinpoint epochs of major star forming events. Spectroscopic age dating though (Strader et al. 2005) is extremely time consuming and can only access the few brightest clusters. An alternative is to combine near-infrared (NIR) and optical photometry, and therefore have a better chance in lifting the age metallicity degeneracy than with optical colours alone. This approach relies in testing GC colours against simple stellar population (SSP) models. The first studies following this technique showed the possible existence of a high percentage of intermediate age (2-3 Gyrs) GCs in early-type galaxies known to contain old stellar populations from integrated light studies. Two strong cases can be listed: NGC 4365 (Puzia et al. 2002, Larsen et al. 2005) and NGC 5846 (Hempel et al. 2003). In the present study we combine NIR deep photometry obtained with the WHT/LIRIS instrument and archival HST/ACS optical images to determine g(F475W), z(F840LP) and K(2.2m) magnitudes and colours of GCs in 14 early-type galaxies.


2021 ◽  
Vol 648 ◽  
pp. A16
Author(s):  
B. Barbuy ◽  
H. Ernandes ◽  
S. O. Souza ◽  
R. Razera ◽  
T. Moura ◽  
...  

Context. The globular cluster AL 3 is old and located in the inner bulge. Three individual stars were observed with the Phoenix spectrograph at the Gemini South telescope. The wavelength region contains prominent lines of CN, OH, and CO, allowing the derivation of C, N, and O abundances of cool stars. Aims. We aim to derive C, N, O abundances of three stars in the bulge globular cluster AL 3, and additionally in stars of NGC 6558 and HP 1. The spectra of AL 3 allows us to derive the cluster’s radial velocity. Methods. For AL 3, we applied a new code to analyse its colour-magnitude diagram. Synthetic spectra were computed and compared to observed spectra for the three clusters. Results. We present a detailed identification of lines in the spectral region centred at 15 555 Å, covering the wavelength range 15 525–15 590 Å. C, N, and O abundances are tentatively derived for the sample stars.


2012 ◽  
Vol 548 ◽  
pp. A107 ◽  
Author(s):  
C. Lardo ◽  
E. Pancino ◽  
A. Mucciarelli ◽  
A. P. Milone

Author(s):  
Salim Yasmineh

All the arguments of a wavefunction are defined at the same instant implying a notion of simultaneity. In a somewhat related matter, certain phenomena in quantum mechanics seem to have non-local causal relations. Both concepts are in contradiction with special relativity. We propose to define the wavefunction with respect to the invariant proper time of special relativity instead of standard time. Moreover, we shall adopt the original idea of Schrodinger suggesting that the wavefunction represents an ontological cloud-like object that we shall call ‘individual fabric’ that has a finite density amplitude vanishing at infinity. Consequently, measurement can be assimilated to a confining potential that triggers an inherent non-local mechanism within the individual fabric. It is formalised by multiplying the wavefunction with a localising gaussian as in the GRW theory but in a deterministic manner.


2019 ◽  
Vol 14 (S351) ◽  
pp. 442-446
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Misha Haywood

AbstractThe Galactic globular cluster system went and is still going through dynamical processes that require to be explored in detail. Here we illustrate how primordial massive globular clusters born in the Milky Way’s disc evolved by stripping material from each other or even merging very early during their lives. These processes might explain the puzzling presence of star-by-star spreads in iron content observed in massive globular clusters and should be taken into account when studying globular cluster stellar populations. In this context, we show how the direct comparison between the predictions provided by our direct N-body simulations and observations can shed light on the origin and chemo-dynamical evolution of globular clusters.


2016 ◽  
Vol 458 (4) ◽  
pp. 4162-4171 ◽  
Author(s):  
Davide Massari ◽  
Emilio Lapenna ◽  
Angela Bragaglia ◽  
Emanuele Dalessandro ◽  
Rodrigo Contreras Ramos ◽  
...  

2020 ◽  
Vol 496 (4) ◽  
pp. 5361-5371
Author(s):  
Abdelrazek M K Shaltout ◽  
Ali G A Abdelkawy ◽  
M M Beheary

ABSTRACT Determinations of the solar abundance of praseodymium (Pr) depend critically on the local thermodynamical equilibrium (LTE) and non-local thermodynamical equilibrium (NLTE) techniques beyond the capabilities of a classical one-dimensional model atmosphere. Here, in this analysis, we adopt an atomic model atom of Pr consisting of 105 energy levels and 14 bound–bound transitions of singly ionized praseodymium (Pr ii) and the ground state of the Pr iii continuum limit. We briefly analyse the solar abundance of Pr taking the solar model atmospheres of Holweger & Müller (1974, Solar Physics, 39, 19) with the measured equivalent linewidths and invoking a microturbulent velocity treatment. We succeed in accurately selecting nearby clear sections of the spectrum for 14 spectral lines of Pr ii with the improved atomic data of high-quality oscillator strengths available from the laboratory measurements of several possible sources as well as accurate damping constants successfully determined from the literature. We find a Pr abundance revised to be downwards log ϵPr(NLTE) = 0.75 ± 0.09, which is in good agreement with the meteoritic value (log ϵPr = 0.76 ± 0.03). A comparison of the NLTE abundance corrections with the standard LTE analysis, log ϵPr(LTE) = 0.74 ± 0.08, reveals a positive correction of  +0.01 dex, estimated from the selected solar Pr ii lines. The Pr abundance value is clearly superior following the classical one-dimensional model atmospheres of Holweger & Müller, the absolute scales of gf-values, the microturbulent velocity and the adopted equivalent linewidths.


Sign in / Sign up

Export Citation Format

Share Document