scholarly journals Effects of Compton scattering on the neutron star radius constraints in rotation-powered millisecond pulsars

2019 ◽  
Vol 627 ◽  
pp. A39 ◽  
Author(s):  
Tuomo Salmi ◽  
Valery F. Suleimanov ◽  
Juri Poutanen

The aim of this work is to study the possible effects and biases on the radius constraints for rotation-powered millisecond pulsars when using Thomson approximation to describe electron scattering in the atmosphere models, instead of using exact formulation for Compton scattering. We compare the differences between the two models in the energy spectrum and angular distribution of the emitted radiation. We also analyse a self-generated, synthetic, phase-resolved energy spectrum, based on Compton atmosphere and the most X-ray luminous, rotation-powered millisecond pulsars observed by the Neutron star Interior Composition ExploreR (NICER). We derive constraints for the neutron star parameters using both the Compton and Thomson models. The results show that the method works by reproducing the correct parameters with the Compton model. However, biases are found in both the size and the temperature of the emitting hotspot, when using the Thomson model. The constraints on the radius are still not significantly changed, and therefore the Thomson model seems to be adequate if we are interested only in the radius measurements using NICER.

2020 ◽  
Vol 641 ◽  
pp. A166
Author(s):  
Juri Poutanen

The X-ray radiation produced on the surface of accreting magnetised neutron stars is expected to be strongly polarised. A swing of the polarisation vector with the pulsar phase gives a direct measure of the source inclination and magnetic obliquity. In the case of rapidly rotating millisecond pulsars, the relativistic motion of the emission region causes additional rotation of the polarisation plane. Here, we develop a relativistic rotating vector model, where we derive analytical expression for the polarisation angle as a function of the pulsar phase accounting for relativistic aberration and gravitational light bending in the Schwarzschild metric. We show that in the case of fast pulsars the rotation of the polarisation plane can reach tens of degrees, strongly influencing the observed shape of the polarisation angle’s phase dependence. The rotation angle grows nearly linearly with the spin rate but it is less sensitive to the neutron star radius. Overall, this angle is large even for large spots. Our results have implications with regard to the modelling of X-ray polarisation from accreting millisecond pulsars that are to be observed with the upcoming Imaging X-ray Polarimeter Explorer and the enhanced X-ray Timing and Polarimetry mission. The X-ray polarisation may improve constraints on the neutron star mass and radius coming from the pulse profile modelling.


2019 ◽  
Vol 627 ◽  
pp. A141 ◽  
Author(s):  
N. A. Webb ◽  
D. Leahy ◽  
S. Guillot ◽  
N. Baillot d’Etivaux ◽  
D. Barret ◽  
...  

Context. Pulsating thermal X-ray emission from millisecond pulsars can be used to obtain constraints on the neutron star equation of state, but to date only five such sources have been identified. Of these five millisecond pulsars, only two have well-constrained neutron star masses, which improve the determination of the radius via modelling of the X-ray waveform. Aims. We aim to find other millisecond pulsars that already have well-constrained mass and distance measurements that show pulsed thermal X-ray emission in order to obtain tight constraints on the neutron star equation of state. Methods. The millisecond pulsar PSR J1909–3744 has an accurately determined mass, M = 1.54 ± 0.03 M⊙ (1σ error) and distance, D = 1.07 ± 0.04 kpc. We analysed XMM-Newton data of this 2.95 ms pulsar to identify the nature of the X-ray emission. Results. We show that the X-ray emission from PSR J1909–3744 appears to be dominated by thermal emission from the polar cap. Only a single component model is required to fit the data. The black-body temperature of this emission is $ {kT}=0.26^{0.03}_{0.02} $ keV and we find a 0.2–10 keV un-absorbed flux of 1.1 × 10−14 erg cm−2 s−1 or an un-absorbed luminosity of 1.5 × 1030 erg s−1. Conclusion. Thanks to the previously determined mass and distance constraints of the neutron star PSR J1909–3744, and its predominantly thermal emission, deep observations of this object with future X-ray facilities should provide useful constraints on the neutron star equation of state.


2000 ◽  
Vol 195 ◽  
pp. 49-60
Author(s):  
W. Becker

Recent X-ray observatories such as ROSAT, ASCA, RXTE, BeppoSAX, and Chandra have achieved important progress in neutron star and pulsar astronomy. The identification of Geminga as a rotation-powered pulsar, the discovery of X-ray emission from millisecond pulsars, and the identification of cooling neutron stars are only a few of the fascinating results. In the following, I will give a brief review on the X-ray emission properties of rotation-powered pulsars and their wind nebulae.


2019 ◽  
Vol 490 (2) ◽  
pp. 2228-2240 ◽  
Author(s):  
A J Goodwin ◽  
D K Galloway ◽  
A Heger ◽  
A Cumming ◽  
Z Johnston

ABSTRACT We present a new method of matching observations of Type-I (thermonuclear) X-ray bursts with models, comparing the predictions of a semi-analytic ignition model with X-ray observations of the accretion-powered millisecond pulsar SAX J1808.4–3658 in outburst. We used a Bayesian analysis approach to marginalize over the parameters of interest and determine parameters such as fuel composition, distance/anisotropy factors, neutron star mass, and neutron star radius. Our study includes a treatment of the system inclination effects, inferring that the rotation axis of the system is inclined $\left(69^{+4}_{-2}\right)^\circ$ from the observers line of sight, assuming a flat disc model. This method can be applied to any accreting source that exhibits Type-I X-ray bursts. We find a hydrogen mass fraction of $0.57^{+0.13}_{-0.14}$ and CNO metallicity of $0.013^{+0.006}_{-0.004}$ for the accreted fuel is required by the model to match the observed burst energies, for a distance to the source of $3.3^{+0.3}_{-0.2}\, \mathrm{kpc}$. We infer a neutron star mass of $1.5^{+0.6}_{-0.3}\, \mathrm{M}_{\odot }$ and radius of $11.8^{+1.3}_{-0.9}\, \mathrm{km}$ for a surface gravity of $1.9^{+0.7}_{-0.4}\times 10^{14}\, \mathrm{cm}\, \mathrm{s}^{-2}$ for SAX J1808.4–3658.


2019 ◽  
Vol 4 (3) ◽  
pp. 66 ◽  
Author(s):  
Kosuke Suzuki ◽  
Ari-Pekka Honkanen ◽  
Naruki Tsuji ◽  
Kirsi Jalkanen ◽  
Jari Koskinen ◽  
...  

High-energy synchrotron X-ray Compton scattering imaging was applied to a commercial 18650-type cell, which is a cylindrical lithium-ion battery in wide current use. By measuring the Compton scattering X-ray energy spectrum non-destructively, the lithiation state in both fresh and aged cells was obtained from two different regions of the cell, one near the outer casing and the other near the center of the cell. Our technique has the advantage that it can reveal the lithiation state with a micron-scale spatial resolution even in large cells. The present method enables us to monitor the operation of large-scale cells and can thus accelerate the development of advanced lithium-ion batteries.


1996 ◽  
Vol 174 ◽  
pp. 203-212
Author(s):  
Ralph A.M.J. Wijers

A key problem in using binaries as a tool for diagnosing cluster evolution is that the tool itself is not very well understood. The theory of binary evolution, despite real successes that can be exploited, has serious problems in many areas relevant to cluster evolution. At least as important but often neglected are connective problems, which arise when theoretical model binaries need to be related to observed classes of object, which often requires poorly understood parts of their physics which can be quite irrelevant to their bulk properties. I shall discuss these issues in general briefly, and then illustrate them with the specific example of X-ray binaries and millisecond pulsars.


2012 ◽  
Vol 8 (S291) ◽  
pp. 145-145
Author(s):  
Juri Poutanen ◽  
Valery Suleimanov

AbstractThermal emission during X-ray bursts is a powerful tool to determine neutron star masses and radii, if the Eddington flux and the apparent radius in the cooling tail can be measured accurately, and distances to the sources are known. We propose here an improved method of determining the basic stellar parameters using the data from the cooling phase of long, photospheric radius expansion bursts covering a large range of luminosities. For this purpose, we computed a large set of atmosphere models for burst luminosities varying by two orders of magnitude and for various chemical compositions and surface gravities. We show that the variation of the inverse square root of the apparent blackbody radius with the flux, observed during the photospheric radius expansion bursts from a number of sources at low accretion rate is entirely consistent with the theoretical expectations of the color-correction factor evolution. However, for bursts happening at higher accretion rates the observed evolution is inconsistent with theory, implying that accretion strongly disturbs the neutron star atmosphere. These findings have profound implications for the recent claims on determination of the neutron star radii and masses from such bursts. Our method allows us to determine both the Eddington flux and the ratio of the stellar apparent radius to the distance much more reliably. For 4U 1724-307, we find a lower limit on the neutron star radius of 13 km, independently of the chemical composition. These results suggest that the matter inside neutron stars is characterized by a stiff equation of state.


2000 ◽  
Vol 177 ◽  
pp. 321-326
Author(s):  
Werner Becker

AbstractRecent X-ray observatories like ROSAT, ASCA, RXTE, BeppoSAX and Chandra have achieved important progress in neutron star and pulsar astronomy. The identification of Geminga as a rotation-powered pulsar, the discovery of X-ray emission from millisecond pulsars and the identification of cooling neutron stars are only few of the fascinating results. In the following I will give a brief review on the X-ray emission properties of rotation-powered pulsars and their wind nebulae.


2017 ◽  
Vol 13 (S337) ◽  
pp. 187-190 ◽  
Author(s):  
Paul S. Ray ◽  
Zaven Arzoumanian ◽  
Keith C. Gendreau ◽  

AbstractThe Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for exploring the modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute event time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for emission and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, low-mass X-ray binaries (LMXBs), accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission, including the discovery of pulsations from the millisecond pulsar J1231–1411.


Sign in / Sign up

Export Citation Format

Share Document