scholarly journals Evidence for the radiation-pressure dominated accretion disk in bursting pulsar GRO J1744−28 using timing analysis

2019 ◽  
Vol 626 ◽  
pp. A106 ◽  
Author(s):  
Juhani Mönkkönen ◽  
Sergey S. Tsygankov ◽  
Alexander A. Mushtukov ◽  
Victor Doroshenko ◽  
Valery F. Suleimanov ◽  
...  

The X-ray pulsar GRO J1744−28 is a unique source that shows both pulsations and type-II X-ray bursts, allowing studies of the interaction of the accretion disk with the magnetosphere at huge mass-accretion rates exceeding 1019 g s−1 during its super-Eddington outbursts. The magnetic field strength in the source, B ≈ 5 × 1011 G, is known from the cyclotron absorption feature discovered in the energy spectrum around 4.5 keV. Here, we have explored the flux variability of the source in context of interaction of its magnetosphere with the radiation-pressure dominated accretion disk. Specifically, we present the results of the analysis of noise power density spectra (PDS) using the observations of the source in 1996–1997 by the Rossi X-ray Timing Explorer (RXTE). Accreting compact objects commonly exhibit a broken power-law PDS shape with a break corresponding to the Keplerian orbital frequency of matter at the innermost disk radius. The observed frequency of the break can thus be used to estimate the size of the magnetosphere. We find, however, that the observed PDS of GRO J1744−28 differs dramatically from the canonical shape. The observed break frequency appears to be significantly higher than expected based on the magnetic field estimated from the cyclotron line energy. We argue that these observational facts can be attributed to the existence of the radiation-pressure dominated region in the accretion disk at luminosities above ∼2 × 1037 erg s−1. We discuss a qualitative model for the PDS formation in such disks, and show that its predictions are consistent with our observational findings. The presence of the radiation-pressure dominated region can also explain the observed weak luminosity dependence of the inner radius, and we argue that the small inner radius can be explained by a quadrupole component dominating the magnetic field of the neutron star.

2018 ◽  
Vol 618 ◽  
pp. A181 ◽  
Author(s):  
De-Hua Wang ◽  
Cheng-Min Zhang ◽  
Jin-Lu Qu

We have taken the kHz QPOs as a tool to probe the correlation between the tracks of X-ray color–color diagram (CCD) and magnetosphere-disk positions for the atoll source 4U 1728-34, based on the assumptions that the upper kHz QPO is ascribed to the Keplerian orbital motion and the neutron star (NS) magnetosphere is defined by the dipole magnetic field. We find that from the island to the banana state, the inner accretion disk gradually approaches the NS surface with the radius decreasing from r ∼ 33.0 km to ∼15.9 km, corresponding to the magnetic field from B(r) ∼ 4.8 × 106 G to ∼4.3 × 107 G. In addition, we note the characteristics of some particular radii of magnetosphere-disk r are: firstly, the whole atoll shape of the CCD links the disk radius range of ∼15.9–33.0 km, which is just located inside the corotation radius of 4U 1728-34 rco (∼34.4 km), implying that the CCD shape is involved in the NS spin-up state. Secondly, the island and banana states of CCD correspond to the two particular boundaries: (I)near the corotation radius at r ∼ 27.2–33.0 km, where the source lies in the island state; (II)near the NS surface at r ∼ 15.9–22.3 km, where the source lies in both the island and banana states. Thirdly, the vertex of the atoll shape in CCD, where the radiation transition from the hard to soft photons occurs, is found to be near the NS surface at r ∼ 16.4 km. The above results suggest that both the magnetic field and accretion environment are related to the CCD structure of atoll track, where the corotation radius and NS hard surface play the significant roles in the radiation distribution of atoll source.


2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


1994 ◽  
Vol 142 ◽  
pp. 783-787
Author(s):  
Vladimir V. Zheleznyakov ◽  
A. V. Serber

AbstractRadiation transfer in a pure hydrogen, fully ionized, isothermal photosphere of an isolated white dwarf with dipole magnetic field is considered, and the radiation pressure force, both in the continuum and in the cyclotron line, is determined with the line saturation effect taken into account. It is shown that the magnetic field can reduce the critical luminosity for white dwarfs. This leads to the possibility of photospheric plasma ejection driven by the radiation in the cyclotron line and the formation of radiation-driven winds from sufficiently hot isolated magnetic white dwarfs.It is shown that cyclotron radiation pressure plays a significant role in the force balance of the photospheres of the magnetic white dwarfs GD 229, GrW +70° 8247, and PG 1031+234. The strong unidentified depression in the UV spectrum of GD 229 is attributed to cyclotron scattering by the radiation-driven plasma envelope with density N ≳ 108 cm−3 .Subject headings: radiative transfer — stars: atmospheres — stars: magnetic fields — white dwarfs


2020 ◽  
Vol 634 ◽  
pp. A89
Author(s):  
V. Doroshenko ◽  
S. Tsygankov ◽  
J. Long ◽  
A. Santangelo ◽  
S. Molkov ◽  
...  

The hard X-ray transient source Swift J1845.7–0037 was discovered in 2012 by Swift/BAT. However, at that time, no dedicated observations of the source were performed. In October 2019, the source became active again, and X-ray pulsations with a period of ∼199 s were detected with Swift/XRT. This triggered follow-up observations with NuSTAR. Here, we report on the timing and spectral analysis of the source properties using NuSTAR and Swift/XRT. The main goal was to confirm pulsations and search for possible cyclotron lines in the broadband spectrum of the source to probe its magnetic field. Despite highly significant pulsations with period of 207.379(2) s being detected, no evidence for a cyclotron line was found in the spectrum of the source. We therefore discuss the strength of the magnetic field based on the source flux and the detection of the transition to the “cold-disc” accretion regime during the 2012 outburst. Our conclusion is that the source is most likely a highly magnetized neutron star with B ≳ 1013 G at a large distance of d ∼ 10 kpc. The latter is consistent with the nondetection of a cyclotron line in the NuSTAR energy band.


2019 ◽  
Vol 629 ◽  
pp. A101 ◽  
Author(s):  
Armin Nabizadeh ◽  
Juhani Mönkkönen ◽  
Sergey S. Tsygankov ◽  
Victor Doroshenko ◽  
Sergey V. Molkov ◽  
...  

We report on NuSTAR observations of the well-known wind-accreting X-ray pulsar GX 301–2 during a strong spin-up episode that took place in January–March 2019. A measurement of high luminosity of the source in the most recent observation allowed us to detect a positive correlation of the cyclotron line energy with luminosity. Beyond that, only minor differences in spectral and temporal properties of the source during the spin-up, presumably associated with the formation of a transient accretion disk, and the normal wind-fed state could be detected. Finally, we discuss conditions for the formation of the disk and possible reasons for lack of any appreciable variations in most of the observed source properties induced by the change of the accretion mechanism, and conclude that the bulk of the observed X-ray emission is still likely powered by direct accretion from the wind.


2020 ◽  
Vol 642 ◽  
pp. A117
Author(s):  
De-Hua Wang ◽  
Cheng-Min Zhang ◽  
Jin-Lu Qu ◽  
Shu-Mei Jia

Based on the detected kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low-mass X-ray binaries (NS-LMXBs), we investigate the evolution of the NS magnetosphere-disk structure along the Z track in the X-ray color-color diagram (CCD) for luminous Z sources, such as Cyg X-2, GX 5-1, GX 17+2, and Sco X-1. We find that the magnetosphere-disk radius r inferred by kHz QPOs for all the sources shows a monotonically decreasing trend along the Z track from the horizontal branch (HB) to the normal branch (NB), implying that the dominated radiation components may dramatically change as the accretion disk moves toward the NS surface. In addition, the specific radius that corresponds to the HB/NB vertex is found to be around r ∼ 20 km, implying a potential characteristic position of transiting for the X-ray radiation mode. Furthermore, we find that the NBs that occur near the NS surface have a radius of r ∼ 16−20 km, which is systematically smaller than those of HBs that have radii of r ∼ 20−29 km. To interpret the relation between the CCD properties and the special magnetosphere-disk radii of Z sources, we suggest that the magnetic field lines corresponding to NB are “frozen-in” to the plasma, and move further inward with the shrinking of the NS magnetosphere-disk radius and pile up near the NS surface. They then form a strong magnetic field region around r ∼ 16−20 km, where the high magnetic energy density and high plasma mass density may dominate the radiation process in NB.


2020 ◽  
Vol 643 ◽  
pp. A128
Author(s):  
Ole König ◽  
Felix Fürst ◽  
Peter Kretschmar ◽  
Ralf Ballhausen ◽  
Ekaterina Sokolova-Lapa ◽  
...  

Context. Neutron stars in low-mass X-ray binaries are important systems for studying the physics of accretion onto compact objects. The system GRO J1744–28 is particularly interesting as it usually shows clear pulsations as well as X-ray bursts. Additionally, there are claims for a magnetic field of 5 × 1011 G through the detection of a cyclotron resonant scattering feature (CRSF). Aims. We present the spectral analysis of GRO J1744–28 using ∼29 ks of NuSTAR data taken in 2017 February at a low luminosity of 3.2 × 1036 erg s−1 (3−50 keV). Our goal is to study the variability of the source spectrum with pulse phase and to search for the claimed CRSF. Methods. The continuum spectrum was modeled with an absorbed power law with exponential cutoff, and an additional iron line component. We found no obvious indications for a CRSF, and therefore performed a detailed cyclotron line search using statistical methods. We performed this search on pulse phase-averaged spectra and on phase-resolved spectra. Results. GRO J1744–28 was observed in a low-luminosity state. The previously detected Type II X-ray bursts are absent. Clear pulsations at a period of 2.141124(9) Hz are detected. The pulse profile shows an indication of a secondary peak that was not seen at higher flux. The upper limit for the strength of a CRSF in the 3−20 keV band is 0.07 keV (90% CL), lower than the strength of the line found at higher luminosity. Conclusions. The detection of pulsations shows that the source did not enter the “propeller” regime, even though the source flux of 4.15 × 10−10 erg cm−2 s−1 was almost one order of magnitude below the threshold for the propeller regime claimed in previous studies on this source. The transition into the propeller regime in GRO J1744–28 must therefore be below a luminosity of 3.2 × 1036 erg s−1 (3−50 keV), which implies a surface magnetic field ≲2.9 × 1011 G and mass accretion rate ≲1.7 × 1016 g s−1. A change of the CRSF depth as function of luminosity is not unexpected and has been observed in other sources. This result possibly implies a change in emission geometry as function of mass accretion rate to reduce the depth of the line below our detection limit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny D. Filippov ◽  
Sergey S. Makarov ◽  
Konstantin F. Burdonov ◽  
Weipeng Yao ◽  
Guilhem Revet ◽  
...  

AbstractWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10$$^{12}$$ 12 –10$$^{13}$$ 13 W/cm$$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.


2021 ◽  
Author(s):  
jialu wu ◽  
Bo Li ◽  
Hong Wang ◽  
Ying Zhen Lai ◽  
Yue Ye ◽  
...  

A pair of enantiomers {[Cu(L-pro)(L-tyr)]·2H2O}n (L-1) and {[Cu(D-pro)(D-tyr)]·2H2O}n (D-1) based on the chiral ligands L/D-proline and L/D-tyrosine were synthesized and investigated by single-crystal X-ray structure analysis, IR, thermogravimetric analysis, solid-state...


Sign in / Sign up

Export Citation Format

Share Document