scholarly journals Giant radio galaxies in the LOFAR Two-metre Sky Survey

2020 ◽  
Vol 635 ◽  
pp. A5 ◽  
Author(s):  
P. Dabhade ◽  
H. J. A. Röttgering ◽  
J. Bagchi ◽  
T. W. Shimwell ◽  
M. J. Hardcastle ◽  
...  

Giant radio galaxies (GRGs) are a subclass of radio galaxies, which have grown to megaparsec scales. GRGs are much rarer than normal-sized radio galaxies (< 0.7 Mpc) and the reason for their gigantic sizes is still debated. Here, we report on the biggest sample of GRGs identified to date. These objects were found in the LOFAR Two-metre Sky Survey first data release images, which cover a 424 deg2 region. Of the 239 GRGs found, 225 are new discoveries. The GRGs in our sample have sizes ranging from 0.7 Mpc to 3.5 Mpc and have redshifts (z) between 0.1 and 2.3. Seven GRGs have sizes above 2 Mpc and one has a size of ∼3.5 Mpc. The sample contains 40 GRGs hosted by spectroscopically confirmed quasars. Here, we present the search techniques employed and the resulting catalogue of the newly discovered large sample of GRGs along with their radio properties. In this paper, we also show for the first time that the spectral index of GRGs is similar to that of normal-sized radio galaxies, indicating that most of the GRG population is not dead or is not similar to a remnant-type radio galaxy. We find that 20 out of 239 GRGs in our sample are located at the centres of clusters and we present our analysis on their cluster environment and radio morphology.

2020 ◽  
Vol 635 ◽  
pp. A185 ◽  
Author(s):  
G. Principe ◽  
G. Migliori ◽  
T. J. Johnson ◽  
F. D’Ammando ◽  
M. Giroletti ◽  
...  

Context. According to radiative models, radio galaxies may produce γ-ray emission from the first stages of their evolution. However, very few such galaxies have been detected by the Fermi Large Area Telescope (LAT) so far. Aims. NGC 3894 is a nearby (z = 0.0108) object that belongs to the class of compact symmetric objects (CSOs, i.e., the most compact and youngest radio galaxies), which is associated with a γ-ray counterpart in the Fourth Fermi-LAT source catalog. Here we present a study of the source in the γ-ray and radio bands aimed at investigating its high-energy emission and assess its young nature. Methods. We analyzed 10.8 years of Fermi-LAT data between 100 MeV and 300 GeV and determined the spectral and variability characteristics of the source. Multi-epoch very long baseline array (VLBA) observations between 5 and 15 GHz over a period of 35years were used to study the radio morphology of NGC 3894 and its evolution. Results. NGC 3894 is detected in γ-rays with a significance >9σ over the full period, and no significant variability has been observed in the γ-ray flux on a yearly time-scale. The spectrum is modeled with a flat power law (Γ = 2.0 ± 0.1) and a flux on the order of 2.2 × 10−9 ph cm−2 s−1. For the first time, the VLBA data allow us to constrain with high precision the apparent velocity of the jet and counter-jet side to be βapp, NW = 0.132 ± 0.004 and βapp, SE = 0.065 ± 0.003, respectively. Conclusions. Fermi-LAT and VLBA results favor the youth scenario for the inner structure of this object, with an estimated dynamical age of 59 ± 5 years. The estimated range of viewing angle (10° < θ <  21°) does not exclude a possible jet-like origin of the γ-ray emission.


2019 ◽  
Vol 628 ◽  
pp. A102 ◽  
Author(s):  
D. Koester ◽  
S. O. Kepler

Context. Among the spectroscopically identified white dwarfs, a fraction smaller than 2% have spectra dominated by carbon lines, mainly molecular C2, but also a smaller group dominated by C I and C II lines. These are together called DQ white dwarfs. Aims. We want to derive atmospheric parameters Teff, log g, and carbon abundances for a large sample of these stars and discuss implications for their spectral evolution. Methods. Sloan Digital Sky Survey spectra and ugriz photometry were used, together with Gaia Data Release 2 parallaxes and G band photometry. These were fitted to synthetic spectra and theoretical photometry derived from model atmospheres. Results. We found that the DQ hotter than Teff ~ 10 000 K have masses ~ 0.4 M⊙ larger than the classical DQ, which have masses typical for the majority of white dwarfs (~ 0.6 M⊙). We found some evidence that the peculiar DQ below 10 000 K also have significantly larger masses and may thus be the descendants of the hot and warm DQ above 10 000 K. A significant fraction of the hotter objects with Teff > 14 500 K have atmospheres dominated by carbon.


2010 ◽  
Vol 406 (1) ◽  
pp. 197-207 ◽  
Author(s):  
Carlos G. Bornancini ◽  
Ana Laura O'Mill ◽  
Sebastián Gurovich ◽  
Diego García Lambas

2019 ◽  
Vol 622 ◽  
pp. A14 ◽  
Author(s):  
S. Mooney ◽  
J. Quinn ◽  
J. R. Callingham ◽  
R. Morganti ◽  
K. Duncan ◽  
...  

Historically, the blazar population has been poorly understood at low frequencies because survey sensitivity and angular resolution limitations have made it difficult to identify megahertz counterparts. We used the LOFAR Two-Metre Sky Survey (LoTSS) first data release value-added catalogue (LDR1) to study blazars in the low-frequency regime with unprecedented sensitivity and resolution. We identified radio counterparts to all 98 known sources from the Third Fermi-LAT Point Source Catalogue (3FGL) or Roma-BZCAT Multi-frequency Catalogue of Blazars (5th edition) that fall within the LDR1 footprint. Only the 3FGL unidentified γ-ray sources (UGS) could not be firmly associated with an LDR1 source; this was due to source confusion. We examined the redshift and radio luminosity distributions of our sample, finding flat-spectrum radio quasars (FSRQs) to be more distant and more luminous than BL Lacertae objects (BL Lacs) on average. Blazars are known to have flat spectra in the gigahertz regime but we found this to extend down to 144 MHz, where the radio spectral index, α, of our sample is −0.17 ± 0.14. For BL Lacs, α = −0.13 ± 0.16 and for FSRQs, α = −0.15 ± 0.17. We also investigated the radio-to-γ-ray connection for the 30 γ-ray-detected sources in our sample. We find Pearson’s correlation coefficient is 0.45 (p = 0.069). This tentative correlation and the flatness of the spectral index suggest that the beamed core emission contributes to the low-frequency flux density. We compare our sample distribution with that of the full LDR1 on colour-colour diagrams, and we use this information to identify possible radio counterparts to two of the four UGS within the LDR1 field. We will refine our results as LoTSS continues.


2017 ◽  
Vol 474 (4) ◽  
pp. 5008-5022 ◽  
Author(s):  
F de Gasperin ◽  
H T Intema ◽  
D A Frail

Abstract The radio spectral index is a powerful probe for classifying cosmic radio sources and understanding the origin of the radio emission. Combining data at 147 MHz and 1.4 GHz from the TIFR GMRT Sky Survey (TGSS) and the NRAO VLA Sky Survey (NVSS), we produced a large-area radio spectral index map of ∼80 per cent of the sky (Dec. &gt; − 40 deg), as well as a radio spectral index catalogue containing 1396 515 sources, of which 503 647 are not upper or lower limits. Almost every TGSS source has a detected counterpart, while this is true only for 36 per cent of NVSS sources. We released both the map and the catalogue to the astronomical community. The catalogue is analysed to discover systematic behaviours in the cosmic radio population. We find a differential spectral behaviour between faint and bright sources as well as between compact and extended sources. These trends are explained in terms of radio galaxy evolution. We also confirm earlier reports of an excess of steep-spectrum sources along the galactic plane. This corresponds to 86 compact and steep-spectrum source in excess compared to expectations. The properties of this excess are consistent with normal non-recycled pulsars, which may have been missed by pulsation searches due to larger than average scattering along the line of sight.


Author(s):  
Shane O'Sullivan ◽  
Marcus Brüggen ◽  
Cameron Van Eck ◽  
Martin Hardcastle ◽  
Marijke Haverkorn ◽  
...  

The technique of Faraday tomography is a key tool for the study of magnetised plasmas in the new era of broadband radio polarisation observations. In particular, observations at metre-wavelengths provide significantly better Faraday depth accuracies compared to traditional cm-wavelength observations. However, the effect of Faraday depolarisation makes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN. The majority of the sources (&sim;64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 &times; 10^26 W/Hz. In several cases, both hotspots are detected in polarisation at an angular resolution of &sim;20". One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least 8 blazars. Most sources display simple Faraday spectra, however, we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 126 ◽  
Author(s):  
Shane O’Sullivan ◽  
Marcus Brüggen ◽  
Cameron Van Eck ◽  
Martin Hardcastle ◽  
Marijke Haverkorn ◽  
...  

The technique of Faraday tomography is a key tool for the study of magnetised plasmas in the new era of broadband radio-polarisation observations. In particular, observations at metre wavelengths provide significantly better Faraday depth accuracies compared to traditional centimetre-wavelength observations. However, the effect of Faraday depolarisation makes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN (Active Galactic Nucleus). The majority of the sources (∼64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 × 10 26 W Hz − 1 (with ∼13% of all sources having a linear size >1 Mpc). In several cases, both hotspots are detected in polarisation at an angular resolution of ∼20″ . One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least eight blazars. Most sources display simple Faraday spectra, but we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.


2019 ◽  
Vol 491 (1) ◽  
pp. L61-L65 ◽  
Author(s):  
Ji-Ping Dai ◽  
Jun-Qing Xia

ABSTRACT In this letter, we present constraints on the scale-dependent ‘local’-type primordial non-Gaussianity, which is described by non-Gaussianity’s spectral index nNG, from the NRAO VLA Sky Survey and the quasar catalogue of the Sloan Digital Sky Survey (SDSS) Data Release 6, together with the SDSS Data Release 12 photo-z sample. Here, we use the autocorrelation analyses of these three probes and their cross-correlation analyses with the cosmic microwave background (CMB) temperature map, and obtain the tight constraint on the spectral index: $n_{\rm NG}=0.2 ^{+0.7}_{-1.0}$ ($1\sigma$ C.L.), which shows the first competitive constraint on the running of non-Gaussianity from current large-scale structure clustering data. Furthermore, we also perform the forecast calculations and improve the limit of nNG using the future Euclid mission, and obtain the standard deviation at a 68 per cent confidence level: ΔnNG = 1.74 when considering the fiducial value fNL = 3, which provides the complementary constraining power to those from the CMB bispectrum information.


1988 ◽  
Vol 129 ◽  
pp. 105-106
Author(s):  
Eugen Preuss ◽  
Walter Alef ◽  
Kenneth I. Kellermann

Due to sensitivity problems only about a dozen of the powerful double-lobed radio galaxies have so far been mapped with VLBI. Even less is known about the time dependence of the small scale structure in these objects (Preuss and Alef, 1987). We have recently reported the first results of our monitoring program of classical double sources. We observed strong changes of the pc-scale structure in 3C111 (Götz et al., 1987) and 3C390.3 (Alef et al., 1987) implying “superluminal behaviour” in both sources. This is the first time that such a phenomenon has been found in lobe-dominated radio galaxies. Both objects are Broad Line Radio Galaxies of type N, and their radio emission from m to cm wavelengths is dominated by their outer lobes which are ∼300 kpc apart (H0 = 50 km/s/Mpc).


2002 ◽  
Vol 199 ◽  
pp. 207-208
Author(s):  
X.Z. Zhang ◽  
B. Peng ◽  
P.C. Chen

We present some statistical results on a large sample of radio sources selected from the most important catalogs. Instrument selection effects on this sample are discussed for the first time. Our analysis suggests that the slope of the median spectral index becomes flatter with decreasing flux density. But the slope is rather small.


Sign in / Sign up

Export Citation Format

Share Document