scholarly journals Infrared and sub-mm observations of outbursting young stars with Herschel and Spitzer

2019 ◽  
Vol 631 ◽  
pp. A30
Author(s):  
A. Postel ◽  
M. Audard ◽  
E. Vorobyov ◽  
O. Dionatos ◽  
C. Rab ◽  
...  

Context. Episodic accretion plays an important role in the evolution of young stars. Although it has been under investigation for a long time, the origin of such episodic accretion events is not yet understood. Aims. We investigate the dust and gas emission of a sample of young outbursting sources in the infrared to get a better understanding of their properties and circumstellar material, and we use the results in a further work to model the objects. Methods. We used Herschel data, from our PI program of 12 objects and complemented with archival observations to obtain the spectral energy distributions (SEDs) and spectra of our targets. We report here the main characteristics of our sample, focussing on the SED properties and on the gas emission lines detected in the PACS and SPIRE spectra. Results. The SEDs of our sample show the diversity of the outbursting sources, with several targets showing strong emission in the far-infrared from the embedded objects. Most of our targets reside in a complex environment, which we discuss in detail. We detected several atomic and molecular lines, in particular rotational CO emission from several transitions from J = 38−37 to J = 4−3. We constructed rotational diagrams for the CO lines, and derived in three domains of assumed local thermodynamic equilibrium (LTE) temperatures and column densities, ranging mainly between 0−100 K and 400−500 K. We confirm correlation in our sample between intense CO J = 16−15 emission and the column density of the warm domain of CO, N(warm). We notice a strong increase in luminosity of HH 381 IRS and a weaker increase for PP 13 S, which shows the beginning of an outburst.

1997 ◽  
Vol 163 ◽  
pp. 725-726
Author(s):  
K.-W. Hodapp ◽  
E. F. Ladd

Stars in the earliest phases of their formation, i.e., those accreting the main component of their final mass, are deeply embedded within dense cores of dust and molecular material. Because of the high line-of-sight extinction and the large amount of circumstellar material, stellar emission is reprocessed by dust into long wavelength radiation, typically in the far-infrared and sub-millimeter bands. Consequently, the youngest sources are strong submillimeter continuum sources, and often undetectable as point sources in the near-infrared and optical. The most deeply embedded of these sources have been labelled “Class 0” sources by André, Ward-Thompson, & Barsony (1994), in an extension of the spectral energy distribution classification scheme first proposed by Adams, Lada, & Shu (1987).


2001 ◽  
Vol 204 ◽  
pp. 47-55
Author(s):  
François Boulanger ◽  
Jean-Philippe Bernard ◽  
Guilaine Lagache ◽  
Bertrand Stepnik

We review the present understanding of the interstellar dust contribution to the far-IR (λ > 100 μm) sky emission. We show how the contribution from the distinct ISM components (HI, H2, HII gas) are identified and characterized through spatial correlation with gas emission lines. We discuss the spectral energy distribution of the emission from cirrus dust associated with diffuse HI gas and from colder dust associated with molecular gas. We relate the drop in dust emission temperature from the diffuse interstellar medium to molecular gas to an evolution of dust affecting both the abundance of small dust grains and the far-IR emissivity of large grains.


2020 ◽  
Vol 494 (2) ◽  
pp. 2823-2838 ◽  
Author(s):  
Ana Trčka ◽  
Maarten Baes ◽  
Peter Camps ◽  
Sharon E Meidt ◽  
James Trayford ◽  
...  

ABSTRACT We compare the spectral energy distributions (SEDs) and inferred physical properties for simulated and observed galaxies at low redshift. We exploit UV-submillimetre mock fluxes of ∼7000 z = 0 galaxies from the EAGLE suite of cosmological simulations, derived using the radiative transfer code skirt. We compare these to ∼800 observed galaxies in the UV-submillimetre range, from the DustPedia sample of nearby galaxies. To derive global properties, we apply the SED fitting code cigale consistently to both data sets, using the same set of ∼80 million models. The results of this comparison reveal overall agreement between the simulations and observations, both in the SEDs and in the derived physical properties, with a number of discrepancies. The optical and far-infrared regimes, and the scaling relations based upon the global emission, diffuse dust, and stellar mass, show high levels of agreement. However, the mid-infrared fluxes of the EAGLE galaxies are overestimated while the far-UV domain is not attenuated enough, compared to the observations. We attribute these discrepancies to a combination of galaxy population differences between the samples and limitations in the subgrid treatment of star-forming regions in the EAGLE-skirt post-processing recipe. Our findings show the importance of detailed radiative transfer calculations and consistent comparison, and provide suggestions for improved numerical models.


2003 ◽  
Vol 590 (1) ◽  
pp. 128-148 ◽  
Author(s):  
Joanna K. Kuraszkiewicz ◽  
Belinda J. Wilkes ◽  
Eric ◽  
J. Hooper ◽  
Kim K. McLeod ◽  
...  

2018 ◽  
Vol 614 ◽  
pp. A33 ◽  
Author(s):  
D. Donevski ◽  
V. Buat ◽  
F. Boone ◽  
C. Pappalardo ◽  
M. Bethermin ◽  
...  

Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 − 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called “500 μm-risers”). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims. We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods. We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results. We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions. We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.


2018 ◽  
Vol 615 ◽  
pp. L14 ◽  
Author(s):  
N. M. Murillo ◽  
D. Harsono ◽  
M. McClure ◽  
S.-P. Lai ◽  
M. R. Hogerheijde

Context. VLA 1623−2417 is a triple protostellar system deeply embedded in Ophiuchus A. Sources A and B have a separation of 1.1″, making their study difficult beyond the submillimeter regime. Lack of circumstellar gas emission suggested that VLA 1623−2417 B has a very cold envelope and is much younger than source A, which is generally considered the prototypical Class 0 source. Aims. We explore the consequences of new ALMA Band 9 data on the spectral energy distribution (SED) of VLA 1623−2417 and their inferred nature. Methods. We constructed and analyzed the SED of each component in VLA 1623−2417 using dust continuum observations spanning from centimeter to near-infrared wavelengths. Results. The ALMA Band 9 data presented in this work show that the SED of VLA 1623−2417 B does not peak at 850 µm as previously expected, but instead presents the same shape as VLA 1623−2417 A at wavelengths shorter than 450 µm. Conclusions. The results presented in this work indicate that the previous assumption that the flux in Herschel and Spitzer observations is solely dominated by VLA 1623−2417 A is not valid, and instead, VLA 1623−2417 B most likely contributes a significant portion of the flux at λ < 450 µm. These results, however, do not explain the lack of circumstellar gas emission and puzzling nature of VLA 1623−2417 B.


2018 ◽  
Vol 610 ◽  
pp. A74
Author(s):  
Mark Kidger ◽  
Staszek Zola ◽  
Mauri Valtonen ◽  
Anne Lähteenmäki ◽  
Emilia Järvelä ◽  
...  

Context. The blazar OJ 287 has shown a ≈12 year quasi-periodicity over more than a century, in addition to the common properties of violent variability in all frequency ranges. It is the strongest known candidate to have a binary singularity in its central engine. Aim. We aim to better understand the different emission components by searching for correlated variability in the flux over four decades of frequency measurements. Methods. We combined data at frequencies from the millimetric to the visible to characterise the multifrequency light curve in April and May 2010. This includes the only photometric observations of OJ 287 made with the Herschel Space Observatory: five epochs of data obtained over 33 days at 250, 350, and 500 μm with Herschel-SPIRE. Results. Although we find that the variability at 37 GHz on timescales of a few weeks correlates with the visible to near-IR spectral energy distribution, there is a small degree of reddening in the continuum at lower flux levels that is revealed by the decreasing rate of decline in the light curve at lower frequencies. However, we see no clear evidence that a rapid flare detected in the light curve during our monitoring in the visible to near-IR light curve is seen either in the Herschel data or at 37 GHz, suggesting a low-frequency cut-off in the spectrum of such flares. Conclusions.We see only marginal evidence of variability in the observations with Herschel over a month, although this may be principally due to the poor sampling. The spectral energy distribution between 37 GHz and the visible can be characterised by two components of approximately constant spectral index: a visible to far-IR component of spectral index α = −0.95, and a far-IR to millimetric spectral index of α = −0.43. There is no evidence of an excess of emission that would be consistent with the 60 μmdust bump found in many active galactic nuclei.


2021 ◽  
Vol 923 (1) ◽  
pp. 5
Author(s):  
Yuma Sugahara ◽  
Akio K. Inoue ◽  
Takuya Hashimoto ◽  
Satoshi Yamanaka ◽  
Seiji Fujimoto ◽  
...  

Abstract We present new Atacama Large Millimeter/submillimeter Array Band 7 observational results of a Lyman-break galaxy at z = 7.15, B14-65666 (“Big Three Dragons”), which is an object detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum emission during the epoch of reionization. Our targets are the [N ii] 122 μm fine-structure emission line and the underlying 120 μm dust continuum. The dust continuum is detected with a ∼19σ significance. From far-infrared spectral energy distribution sampled at 90, 120, and 160 μm, we obtain a best-fit dust temperature of 40 K (79 K) and an infrared luminosity of log 10 ( L IR / L ⊙ ) = 11.6 (12.1) at the emissivity index β = 2.0 (1.0). The [N ii] 122 μm line is not detected. The 3σ upper limit of the [N ii] luminosity is 8.1 × 107 L ⊙. From the [N ii], [O iii], and [C ii] line luminosities, we use the Cloudy photoionization code to estimate nebular parameters as functions of metallicity. If the metallicity of the galaxy is high (Z > 0.4 Z ⊙), the ionization parameter and hydrogen density are log 10 U ≃ − 2.7 ± 0.1 and n H ≃ 50–250 cm−3, respectively, which are comparable to those measured in low-redshift galaxies. The nitrogen-to-oxygen abundance ratio, N/O, is constrained to be subsolar. At Z < 0.4 Z ⊙, the allowed U drastically increases as the assumed metallicity decreases. For high ionization parameters, the N/O constraint becomes weak. Finally, our Cloudy models predict the location of B14-65666 on the BPT diagram, thereby allowing a comparison with low-redshift galaxies.


2020 ◽  
Vol 640 ◽  
pp. A72
Author(s):  
M. Riener ◽  
J. Kainulainen ◽  
J. D. Henshaw ◽  
H. Beuther

Knowledge about the distribution of CO emission in the Milky Way is essential to understanding the impact of the Galactic environment on the formation and evolution of structures in the interstellar medium. However, our current insight as to the fraction of CO in the spiral arm and interarm regions is still limited by large uncertainties in assumed rotation curve models or distance determination techniques. In this work we use the Bayesian approach from Reid et al. (2016, ApJ, 823, 77; 2019, ApJ, 885, 131), which is based on our most precise knowledge at present about the structure and kinematics of the Milky Way, to obtain the current best assessment of the Galactic distribution of 13CO from the Galactic Ring Survey. We performed two different distance estimates that either included (Run A) or excluded (Run B) a model for Galactic features, such as spiral arms or spurs. We also included a prior for the solution of the kinematic distance ambiguity that was determined from a compilation of literature distances and an assumed size-linewidth relationship. Even though the two distance runs show strong differences due to the prior for Galactic features for Run A and larger uncertainties due to kinematic distances in Run B, the majority of their distance results are consistent with each other within the uncertainties. We find that the fraction of 13CO emission associated with spiral arm features ranges from 76 to 84% between the two distance runs. The vertical distribution of the gas is concentrated around the Galactic midplane, showing full-width at half-maximum values of ~75 pc. We do not find any significant difference between gas emission properties associated with spiral arm and interarm features. In particular, the distribution of velocity dispersion values of gas emission in spurs and spiral arms is very similar. We detect a trend of higher velocity dispersion values with increasing heliocentric distance, which we, however, attribute to beam averaging effects caused by differences in spatial resolution. We argue that the true distribution of the gas emission is likely more similar to a combination of the two distance results discussed, and we highlight the importance of using complementary distance estimations to safeguard against the pitfalls of any single approach. We conclude that the methodology presented in this work is a promising way to determine distances to gas emission features in Galactic plane surveys.


Sign in / Sign up

Export Citation Format

Share Document