scholarly journals Dynamics of DiskMass Survey galaxies in refracted gravity

2020 ◽  
Vol 637 ◽  
pp. A70 ◽  
Author(s):  
V. Cesare ◽  
A. Diaferio ◽  
T. Matsakos ◽  
G. Angus

We aim to verify whether refracted gravity (RG) is capable of describing the dynamics of disk galaxies without resorting to the presence of dark matter. RG is a classical theory of gravity in which the standard Poisson equation is modified with the introduction of the gravitational permittivity, which is a universal monotonic function of the local mass density. We used the rotation curves and the radial profiles of the stellar velocity dispersion perpendicular to the galactic disks of 30 disk galaxies from the DiskMass Survey (DMS) to determine the gravitational permittivity. RG describes the rotation curves and the vertical velocity dispersions by requiring galaxy mass-to-light ratios that are in agreement with stellar population synthesis models, and disk thicknesses that are in agreement with observations, once observational biases are taken into account. Our results rely on setting the three free parameters of the gravitational permittivity for each individual galaxy. However, we show that the differences of these parameters from galaxy to galaxy can, in principle, be ascribed to statistical fluctuations. We adopted an approximate procedure to estimate a single set of parameters that may properly describe the kinematics of the entire sample and suggest that the gravitational permittivity is indeed a universal function. Finally, we showed that the RG models of the individual rotation curves can only partly describe the radial acceleration relation (RAR) between the observed centripetal acceleration derived from the rotation curve and the Newtonian gravitational acceleration originating from the baryonic mass distribution. Evidently, the RG models underestimate the observed accelerations by 0.1 to 0.3 dex at low Newtonian accelerations. An additional problem that ought to be considered is the strong correlation, at much more than 5σ, between the residuals of the RAR models and three radially-dependent properties of the galaxies, whereas the DMS data show a considerably less significant correlation, at more than 4σ, for only two of these quantities. These correlations might be the source of the non-null intrinsic scatter of the RG models: this non-null scatter is at odds with the observed intrinsic scatter of other galaxy samples different from DMS, which is consistent with zero. Further investigations are required to assess whether these discrepancies in the RAR originate from the DMS sample, which might not be ideal for deriving the RAR, or whether they are genuine failures of RG.

2018 ◽  
Vol 27 (14) ◽  
pp. 1847010 ◽  
Author(s):  
Sabine Hossenfelder ◽  
Tobias Mistele

Modified Newtonian Dynamics has one free parameter and requires an interpolation function to recover the normal Newtonian limit. We here show that this interpolation function is unnecessary in a recently proposed covariant completion of Erik Verlinde’s emergent gravity, and that Verlinde’s approach moreover fixes the function’s one free parameter. The so-derived correlation between the observed acceleration (inferred from rotation curves) and the gravitational acceleration due to merely the baryonic matter fits well with data. We then argue that the redshift-dependence of galactic rotation curves could offer a way to tell apart different versions of modified gravity from particle dark matter.


2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


Author(s):  
Srinikitha Bhagvati ◽  
Shantanu Desai

Abstract In a recent work, Dai [1] searched for a variability in Newton’s constant G using the IGETS based gravitational acceleration measurements. However, this analysis, obtained from χ 2 minimization, did not incorporate the errors in the gravitational acceleration measurements. We carry out a similar search with one major improvement, wherein we incorporate these aforementioned errors. To model any possible variation in the gravitational acceleration, we fit the data to four models: a constant value, two sinusoidal models, and finally, a linear model for the variation of gravitational acceleration. We find that none of the four models provides a good fit to the data, showing that there is no evidence for a periodicity or a linear temporal variation in the acceleration measurements. We then redid these analyses after accounting for an unknown intrinsic scatter. After this, we find that although a constant model is still favored over the sinusoidal models, the linear variation for G is marginally preferred over a constant value, using information theory-based methods.


2020 ◽  
Vol 494 (2) ◽  
pp. 1859-1864 ◽  
Author(s):  
Isaac Alonso Asensio ◽  
Claudio Dalla Vecchia ◽  
Yannick M Bahé ◽  
David J Barnes ◽  
Scott T Kay

ABSTRACT By using deep observations of clusters of galaxies, it has been recently found that the projected stellar mass density closely follows the projected total (dark and baryonic) mass density within the innermost ∼140 kpc. In this work, we aim to test these observations using the Cluster-EAGLE simulations, comparing the projected densities inferred directly from the simulations. We compare the iso-density contours using the procedure of Montes & Trujillo, and find that the shape of the stellar mass distribution follows that of the total matter even more closely than observed, although their radial profiles differ substantially. The ratio between stellar and total matter density profiles in circular apertures shows a slope close to −1, with a small dependence on the cluster’s total mass. We propose an indirect method to calculate the halo mass and mass density profile from the radial profile of the intracluster stellar mass density.


Galaxies ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 36 ◽  
Author(s):  
Alan Sipols ◽  
Alex Pavlovich

The aim of this paper is to test the need for non-baryonic dark matter in the context of galactic rotation and the apparent difference between distributions of galactic mass and luminosity. We present a set of rotation curves and 3.6 μm surface brightness profiles for a diverse sample of 214 galaxies. Using rotation curves as the sole input into our Newtonian disk model, we compute non-parametric radial profiles of surface mass density. All profiles exhibit lower density than parametric models with dark halos and provide a superior fit with observed rotation curves. Assuming all dynamical mass is in main-sequence stars, we estimate radial distributions of characteristic star mass implied by the corresponding pairs of density and brightness profiles. We find that for 132 galaxies or 62% of the sample, the relation between density and brightness can be fully explained by a radially declining stellar mass gradient. Such idealized stellar population fitting can also largely address density and brightness distributions of the remaining 82 galaxies, but their periphery shows, on average, 14 M⊙/pc2 difference between total density and light-constrained stellar density. We discuss how this density gap can be interpreted, by considering a low-luminosity baryonic matter, observational uncertainties, and visibility cutoffs for red dwarf populations. Lastly, we report tight correlation between radial density and brightness trends, and the discovered flattening of surface brightness profiles—both being evidence against dark matter. Our findings make non-baryonic dark matter unnecessary in the context of galactic rotation.


1987 ◽  
Vol 117 ◽  
pp. 119-132 ◽  
Author(s):  
K. C. Freeman

What are the characteristic scale lengths and densities for the dark halos of galaxies, and the typical ratios of dark to luminous mass? For elliptical galaxies, the best estimates come from X-ray data which will be discussed in a later session. For spirals, the best estimates come from rotation curves. I will concentrate on the halo parameters for disk galaxies. At the end, there will be a few comments on stellar dynamical data for ellipticals, and on the unique information available for the dark halo of our Galaxy.


2019 ◽  
Vol 882 (1) ◽  
pp. 6 ◽  
Author(s):  
Connor Stone ◽  
Stéphane Courteau

2016 ◽  
Vol 152 (6) ◽  
pp. 157 ◽  
Author(s):  
Federico Lelli ◽  
Stacy S. McGaugh ◽  
James M. Schombert

2016 ◽  
Vol 11 (S321) ◽  
pp. 102-104
Author(s):  
Mercedes Mollá ◽  
Angeles I. Díaz ◽  
Brad K. Gibson ◽  
Oscar Cavichia ◽  
Ángel-R. López-Sánchez

AbstractWe summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.


Open Physics ◽  
2003 ◽  
Vol 1 (4) ◽  
Author(s):  
Sawa Manoff

AbstractThe notions of centrifugal (centripetal) and Coriolis' velocities and accelerations are introduced and considered in spaces with affine connections and metrics [ $$ (\bar L_n ,g) $$ -spaces] as velocities and accelerations of flows of mass elements (particles) moving in space-time. It is shown that these types of velocities and accelerations are generated by the relative motions between the mass elements. They are closely related to the kinematic characteristics of the relative velocity and relative acceleration. The centrifugal (centripetal) velocity is found to be in connection with the Hubble law. The centrifugal (centripetal) acceleration could be interpreted as gravitational acceleration as has been done in the Einstein theory of gravitation. This fact could be used as a basis for workingout new gravitational theories in spaces with affine connections and metrics.


Sign in / Sign up

Export Citation Format

Share Document