scholarly journals A Lyα nebula at z ∼ 3.3

2020 ◽  
Vol 641 ◽  
pp. A32
Author(s):  
P. Hibon ◽  
F. Tang ◽  
R. Thomas

Context. Searching for high-redshift galaxies is a field of intense activity in modern observational cosmology that will continue to grow with future ground-based and sky observatories. Over the last few years, a lot has been learned about the high-z Universe. Aims. Despite extensive Lyα blobs (LAB) surveys from low to high redshifts, giant LABs over 100 kpc have been found mostly at z ∼ 2–4. This redshift range is coincident with the transition epoch of galactic gas-circulation processes from inflows to outflows at z ∼ 2.5–3. This suggests that the formation of giant LABs may be related to a combination of gas inflows and outflows. Their extreme youth makes them interesting objects in the study of galaxy formation as they provide insight into some of the youngest known highly star forming galaxies, with only modest time investments using ground-based telescopes. Methods. Systematic narrow-band Lyα nebula surveys are ongoing, but they are limited in their covered redshift range and their comoving volume. This poses a significant problem when searching for such rare sources. To address this problem, we developed a systematic searching tool, ATACAMA (A Tool for seArChing for lArge LyMan Alpha nebulae) designed to find large Lyα nebulae at any redshift within deep multi-wavelength broad-band imaging. Results. We identified a Lyα nebula candidate at zphot ∼ 3.3 covering an isophotal area of 29.4arcsec2. Its morphology shows a bright core and a faint core which coincides with the morphology of previously known Lyα blobs. A first estimation of the Lyα equivalent width and line flux agree with the values from the study led by several groups.

2006 ◽  
Vol 2 (14) ◽  
pp. 252-252
Author(s):  
Esther M. Hu ◽  
Lennox L. Cowie ◽  
Yuko Kakazu

AbstractObserved properties of spectroscopically confirmed galaxies at z≫5 and z≫6 based on selection from deep, multi-wavelength wide-field samples provide a picture of the current status of the properties of high-redshift galaxies and their evolution to yet higher redshifts.In the current presentation, we use results of deep, wide-field spectroscopy with the multi-object Deimos spectrograph on Keck in combination with deep, wide-field multi-color imaging studies using the SuprimeCam CCD camera of Subaru for a number of fields, to evaluate the luminosity function of high-redshift galaxies and its evolution at z>6. High-redshift candidates are selected using both narrow-band Lyman alpha emission and broad-band colors with a high success-rate from a number of SuprimeCam (0.5 degree FOV) fields.Luminosity functions and Lymanα emission line profiles and equivalent widths appear similar between samples at z≃5.7 and z≃6.5, and the galaxy distribution is structured both spatially and in redshift. A large amount of cosmic variance is seen in the distribution of z≫6 galaxies from field to field.The observed properties are discussed in relationship to their impact on strategies for complementary optical surveys of high-redshift galaxies, and in relationship to surveys at very different wavelengths (X-ray, far-infrared, and submillimeter) that cover the same regions.


2019 ◽  
Vol 15 (S341) ◽  
pp. 240-244
Author(s):  
Hidenobu Yajima ◽  
Shohei Arata ◽  
Makito Abe ◽  
Kentaro Nagamine

AbstractRecent discoveries of high-redshift galaxies have revealed the diversity of their physical properties, from normal star-forming galaxies to starburst galaxies. To understand the properties of these observed galaxies, it is crucial to understand the star formation (SF) history, and the radiation properties associated with the SF activity. Here we present the results of cosmological hydrodynamic simulations with zoom-in initial conditions, and show the formation of the first galaxies and their evolution towards observable galaxies at z = 6. In addition, we show their multi-wavelength radiative properties. We find that star formation occurs intermittently due to supernova (SN) feedback at z > 10, and their radiation properties rapidly change with time. We suggest that the first galaxies are bright at UV wavelengths just after the starburst phase, and become extended Lyman-alpha sources. We also show that massive galaxies cause dusty starburst and become bright at infrared wavelengths.


2019 ◽  
Vol 632 ◽  
pp. A98 ◽  
Author(s):  
Antonello Calabrò ◽  
Emanuele Daddi ◽  
Jérémy Fensch ◽  
Frédéric Bournaud ◽  
Anna Cibinel ◽  
...  

While the formation of stellar clumps in distant galaxies is usually attributed to gravitational violent disk instabilities, we show here that major mergers also represent a competitive mechanism to form bright clumps. Using ∼0.1″ resolution ACS F814W images in the entire COSMOS field, we measured the fraction of clumpy emission in 109 main sequence (MS) and 79 Herschel-detected starbursts (off-MS) galaxies at 0.5 < z < 0.9, representative of normal versus merger induced star-forming activity, respectively. We additionally identify merger samples from visual inspection and from Gini-M20 morphological parameters. Regardless of the merger criteria adopted, the clumpiness distribution of merging systems is different from that of normal isolated disks at a > 99.5% confidence level. The former reaches higher clumpiness values up to 20% of the total galaxy emission. We confirm the merger induced clumpiness enhancement with novel hydrodynamical simulations of colliding galaxies with gas fractions typical of z ∼ 0.7. Multi-wavelength images of three starbursts in the CANDELS field support the young nature of clumps, which are likely merger products rather than older preexisting structures. Finally, for a subset of 19 starbursts with existing near-infrared rest frame spectroscopy, we find that the clumpiness is mildly anti-correlated with the merger phase, which decreases toward final coalescence. Our result can explain recent ALMA detections of clumps in hyperluminous high-z starbursts, while normal objects are smooth. This work raises a question as to the role of mergers on the origin of clumps in high redshift galaxies in general.


2012 ◽  
Vol 8 (S290) ◽  
pp. 183-184 ◽  
Author(s):  
María Celeste Artale ◽  
Leonardo J. Pellizza ◽  
Patricia B. Tissera ◽  
I. Felix Mirabel

AbstractRecent observational and theoretical results suggest that the production rates and luminosities of high-mass X-ray binaries depend on metallicity. To test this prediction, we combine HMXB population synthesis results with numerical simulations of galaxy formation to produce synthetic populations of HMXBs in star-forming galaxies, and compare the model predictions to observations of HMXB populations in nearby and high-redshift galaxies. Our models show a fair agreement with observations only when the HMXB production and luminosities are assumed to depend strongly on metallicity.


2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


2004 ◽  
Vol 615 (1) ◽  
pp. 98-117 ◽  
Author(s):  
Samantha A. Rix ◽  
Max Pettini ◽  
Claus Leitherer ◽  
Fabio Bresolin ◽  
Rolf‐Peter Kudritzki ◽  
...  

2019 ◽  
Vol 15 (S352) ◽  
pp. 121-122
Author(s):  
A. Plat ◽  
S. Charlot ◽  
G. Bruzual ◽  
A. Feltre ◽  
A. Vidal-Garca ◽  
...  

AbstractTo understand how the nature of the ionizing sources and the leakage of ionizing photons in high-redshift galaxies can be constrained from their emission-line spectra, we compare emission-line models of star-forming galaxies including leakage of ionizing radiation, active galactic nuclei (AGN) and radiative shocks, with observations of galaxies at various redshifts with properties expected to approach those of primeval galaxies.


2007 ◽  
Vol 660 (2) ◽  
pp. L93-L96 ◽  
Author(s):  
Yu Gao ◽  
Chris L. Carilli ◽  
Philip M. Solomon ◽  
Paul A. Vanden Bout

2019 ◽  
Vol 15 (S352) ◽  
pp. 71-72
Author(s):  
Yifei Jin ◽  
Lisa Kewley ◽  
Ralph Sutherland

AbstractAccurate predictions of the physics of interstellar medium (ISM) are vital for understanding galaxy formation and evolution. Modelling photoionized regions with complex geometry produces realistic ionization structures within the nebulae, providing the necessary physical predictions to interpret observational data. 3D photoionization codes built with Monte Carlo techniques provide powerful tools to produce the ionizing radiation field with fractal geometry. We present a high-resolution Monte Carlo modelling of a nebula with fractal geometry, and will further show how nebular geometry influences the emission-line behaviours. Our research has important implications for studies of emission-line ratios in high redshift galaxies.


Sign in / Sign up

Export Citation Format

Share Document