scholarly journals A hyper luminous starburst at z = 4.72 magnified by a lensing galaxy pair at z = 1.48

2020 ◽  
Vol 635 ◽  
pp. A27 ◽  
Author(s):  
L. Ciesla ◽  
M. Béthermin ◽  
E. Daddi ◽  
J. Richard ◽  
T. Diaz-Santos ◽  
...  

We serendipitously discovered in the Herschel Reference Survey an extremely bright infrared source with S500 ∼ 120 mJy in the line of sight of the Virgo cluster which we name Red Virgo 4 (RV4). Based on IRAM/EMIR and IRAM/NOEMA detections of the CO(5−4), CO(4−3), and [CI] lines, RV4 is located at a redshift of 4.724, yielding a total observed infrared luminosity of 1.1 ± 0.6 × 1014 L⊙. At the position of the Herschel emission, three blobs are detected with the VLA at 10 cm. The CO(5−4) line detection of each blob confirms that they are at the same redshift with the same line width, indicating that they are multiple images of the same source. In Spitzer and deep optical observations, two sources, High-z Lens 1 (HL1) West and HL1 East, are detected at the center of the three VLA/NOEMA blobs. These two sources are placed at z = 1.48 with X-shooter spectra, suggesting that they could be merging and gravitationally lensing the emission of RV4. HL1 is the second most distant lens known to date in strong lensing systems. Constrained by the position of the three VLA/NOEMA blobs, the Einstein radius of the lensing system is 2.2″ ± 0.2 (20 kpc). The high redshift of HL1 and the large Einstein radius are highly unusual for a strong lensing system. In this paper, we present the insterstellar medium properties of the background source RV4. Different estimates of the gas depletion time yield low values suggesting that RV4 is a starburst galaxy. Among all high-z submillimeter galaxies, this source exhibits one of the lowest L[CI] to LIR ratios, 3.2 ± 0.9 × 10−6, suggesting an extremely short gas depletion time of only 14 ± 5 Myr. It also shows a relatively high L[CI] to LCO(4−3) ratio (0.7 ± 0.2) and low LCO(5−4) to LIR ratio (only ∼50% of the value expected for normal galaxies) hinting at low density of gas. Finally, we discuss the short depletion time of RV4. It can be explained by either a very high star formation efficiency, which is difficult to reconcile with major mergers simulations of high-z galaxies, or a rapid decrease of star formation, which would bias the estimate of the depletion time toward an artificially low value.

2020 ◽  
Vol 493 (3) ◽  
pp. 4315-4332 ◽  
Author(s):  
Xiangcheng Ma ◽  
Michael Y Grudić ◽  
Eliot Quataert ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
...  

ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies.


2015 ◽  
Vol 11 (S315) ◽  
pp. 254-257
Author(s):  
Miroslava Dessauges-Zavadsky ◽  
Michel Zamojski ◽  
Daniel Schaerer ◽  
Françoise Combes ◽  
Eiichi Egami ◽  
...  

AbstractCurrent star-forming galaxies (SFGs) with CO measurements at z ~ 2 suffer from a bias toward high star formation rates (SFR) and high stellar masses (M*). It is yet essential to extend the CO measurements to the more numerous z ~ 2 SFGs with LIR < L⋆ = 4× 1011 L⊙ and M* < 2.5× 1010 M⊙. We have achieved CO, stars, and dust measurements in 8 such sub-L⋆ SFGs with the help of gravitational lensing. Combined with CO-detected galaxies from the literature, we find that the LIR, L′CO(1−0) data are best-fitted with a single relation that favours a universal star formation. This picture emerges because of the enlarged star formation efficiency spread of the current z>1 SFGs sample. We show that this spread is mostly triggered by the combination of redshift, specific SFR, and M*. Finally, we find evidence for a non-universal dust-to-gas ratio (DGR) with a clear trend for a lower DGR mean in z>1 SFGs by a factor of 2 with respect to local galaxies and high-redshift sub-mm galaxies at fixed about solar metallicity.


2019 ◽  
Vol 632 ◽  
pp. L7 ◽  
Author(s):  
G. C. Jones ◽  
R. Maiolino ◽  
P. Caselli ◽  
S. Carniani

We report the discovery of a high-redshift, massive molecular outflow in the starburst galaxy SPT 0346-52 (z = 5.656) via the detected absorption of high-excitation water transitions (H2O 42,3 − 41,4 and H2O 33,0 − 32,1) with the Atacama Large Millimeter/submillimeter Array (ALMA). The host galaxy is one of the most powerful starburst galaxies at high redshift (star formation rate; SFR ∼3600 M⊙ year−1), with an extremely compact (∼320 pc) star formation region and a SFR surface density (ΣSFR ∼ 5500 M⊙ year−1 kpc−2) five times higher than “maximum” (i.e. Eddington-limited) starbursts, implying a highly transient phase. The estimated outflow rate is ∼500 M⊙ year−1, which is much lower than the SFR, implying that in this extreme starburst the outflow capabilities saturate and the outflow is no longer capable of regulating star formation, resulting in a runaway process in which star formation will use up all available gas in less than 30 Myr. Finally, while previous kinematic investigations of this source revealed possible evidence for an ongoing major merger, the coincidence of the hyper-compact starburst and high-excitation water absorption indicates that this is a single starburst galaxy surrounded by a disc.


2010 ◽  
Vol 6 (S277) ◽  
pp. 47-54
Author(s):  
Françoise Combes

AbstractI review some recent results about the molecular content of galaxies, obtained essentially from the CO lines, but also dense tracers, or the dust continuum emission. New results have been obtained on molecular cloud physics, and their efficiency to form stars, shedding light on the Kennicutt-Schmidt law as a function of surface density and galaxy type. Large progress has been made on galaxy at moderate and high redshifts, allowing to interprete the star formation history and star formation efficiency as a function of gas content, or galaxy evolution. In massive galaxies, the gas fraction was higher in the past, and galaxy disks were more unstable and more turbulent. ALMA observations will allow the study of more normal galaxies at high z with higher spatial resolution and sensitivity.


2020 ◽  
Vol 496 (2) ◽  
pp. 2315-2333
Author(s):  
J Greenslade ◽  
D L Clements ◽  
G Petitpas ◽  
V Asboth ◽  
A Conley ◽  
...  

ABSTRACT We present SMA observations at resolutions from 0.35 to 3 arcsec of a sample of 34 candidate high redshift dusty star forming galaxies (DSFGs). These sources were selected from the HerMES Herschel survey catalogues to have SEDs rising from 250 to 350 to 500 μm, a population termed 500-risers. We detect counterparts to 24 of these sources, with four having two counterparts. We conclude that the remaining ten sources that lack detected counterparts are likely to have three or more associated sources which blend together to produce the observed Herschel source. We examine the role of lensing, which is predicted to dominate the brightest (F500 &gt; 60 mJy) half of our sample. We find that while lensing plays a role, at least 35 per cent of the bright sources are likely to be multiple sources rather than the result of lensing. At fainter fluxes we find a blending rate comparable to, or greater than, the predicted 40 per cent. We determine far-IR luminosities and star formation rates for the non-multiple sources in our sample and conclude that, in the absence of strong lensing, our 500-risers are very luminous systems with LFIR &gt; 1013 L⊙ and star formation rates &gt;1000 M⊙ yr−1.


2021 ◽  
Vol 502 (3) ◽  
pp. 4359-4376
Author(s):  
Arpita Roy ◽  
Michael A Dopita ◽  
Mark R Krumholz ◽  
Lisa J Kewley ◽  
Ralph S Sutherland ◽  
...  

ABSTRACT Understanding the evolution of the N/O ratio in the interstellar medium (ISM) of galaxies is essential if we are to complete our picture of the chemical evolution of galaxies at high redshift, since most observational calibrations of O/H implicitly depend upon the intrinsic N/O ratio. The observed N/O ratio, however, shows large scatter at low O/H, and is strongly dependent on galactic environment. We show that several heretofore unexplained features of the N/O distribution at low O/H can be explained by the N seen in metal-poor galaxies being mostly primary nitrogen that is returned to the ISM via pre-supernova winds from rapidly rotating massive stars (M ≳ 10 M⊙, v/vcrit ≳ 0.4). This mechanism naturally produces the observed N/O plateau at low O/H. We show that the large scatter in N/O at low O/H also arises naturally from variations in star-formation efficiency. By contrast, models in which the N and O come primarily from supernovae provide a very poor fit to the observed abundance distribution. We propose that the peculiar abundance patterns we observe at low O/H are a signature that dwarf galaxies retain little of their SN ejecta, leaving them with abundance patterns typical of winds.


2019 ◽  
Vol 488 (2) ◽  
pp. 2673-2688
Author(s):  
Hoyoung D Kang ◽  
Massimo Ricotti

ABSTRACT Stellar haloes observed around normal galaxies are extended and faint stellar structures formed by debris of tidally disrupted dwarf galaxies accreted overtime by the host galaxy. Around dwarf galaxies, these stellar haloes may not exist if all the accreted satellites are dark haloes without stars. However, if a stellar halo is found in sufficiently small mass dwarfs, the whole stellar halo is composed of tidal debris of fossil galaxies, and we refer to it as ghostly halo. Fossil galaxies are so called because they formed most of their stars before the epoch of reionization, and have been identified as the ultrafaint dwarf galaxies found around the Milky Way and M31. In this paper, we carry out semi-analytical simulations to characterize the sizes and stellar masses of ghostly stellar haloes in dwarf galaxies as a function of their dark matter halo mass. By comparing the models to observations of six isolated dwarf galaxies in the Local Group showing evidence of extended stellar haloes, we are able to constrain the star formation efficiency in fossil galaxies. We find that at redshift z ∼ 6, dark matter haloes in the mass range 107–109 M⊙ have a mean star formation efficiency $f_* \equiv M_*/M_{\mathrm{ dm}} \sim 0.1\!-\!0.2\hbox{ per cent}$ nearly constant as a function of the dark matter halo mass.


2020 ◽  
Vol 499 (4) ◽  
pp. 5241-5256
Author(s):  
Cheng Cheng ◽  
Edo Ibar ◽  
Ian Smail ◽  
Juan Molina ◽  
David Sobral ◽  
...  

ABSTRACT We present Atacama Large Millimeter/Submillimeter Array (ALMA) continuum observations of a sample of nine star-forming galaxies at redshifts 1.47 and 2.23 selected from the High-z Emission Line Survey (HiZELS). Four galaxies in our sample are detected at high significance by ALMA at a resolution of 0${_{.}^{\prime\prime}}$25 at rest-frame 355 μm. Together with the previously observed H α emission, from adaptive optics-assisted integral-field-unit spectroscopy (∼0${_{.}^{\prime\prime}}$15 resolution), and F606W and F140W imaging from the Hubble Space Telescope (∼0${_{.}^{\prime\prime}}$2 resolution), we study the star formation activity, stellar and dust mass in these high-redshift galaxies at ∼kpc-scale resolution. We find that ALMA detection rates are higher for more massive galaxies (M* &gt; 1010.5 M⊙) and higher [N ii]/H α ratios (&gt;0.25, a proxy for gas-phase metallicity). The dust extends out to a radius of 8 kpc, with a smooth structure, even for those galaxies presenting clumpy H α morphologies. The half-light radii (Rdust) derived for the detected galaxies are of the order ∼4.5 kpc, more than twice the size of submillimetre-selected galaxies at a similar redshift. Our global star formation rate estimates – from far-infrared and extinction-corrected H α luminosities – are in good agreement. However, the different morphologies of the different phases of the interstellar medium suggest complex extinction properties of the high-redshift normal galaxies.


2012 ◽  
Vol 8 (S292) ◽  
pp. 303-306
Author(s):  
F. Combes ◽  
S. García-Burillo ◽  
J. Braine ◽  
E. Schinnerer ◽  
F. Walter ◽  
...  

AbstractStar formation is evolving very fast in the second half of the Universe, and it is as yet unclear whether this is due to evolving gas content, or evolving star formation efficiency (SFE). We have carried out a survey of ultra-luminous galaxies (ULIRG) between z = 0.2 and 1, to check the gas fraction in this domain of redshift which is still poorly known. Our survey with the IRAM-30m detected 33 galaxies out of 69, and we derive a significant evolution of both the gas fraction and SFE of ULIRGs over the whole period, and in particular a turning point around z = 0.35. The result is sensitive to the CO-to-H2 conversion factor adopted, and both gas fraction and SFE have comparable evolution, when we adopt the low starburst conversion factor of α = 0.8 M⊙ (K km s−1 pc2)−1. Adopting a higher α will increase the role of the gas fraction. Using α = 0.8, the SFE and the gas fraction for z∼0.2-1.0 ULIRGs are found to be significantly higher, by a factor 3, than for local ULIRGs, and are comparable to high redshift ones. We compare this evolution to the expected cosmic H2 abundance and the cosmic star formation history.


Sign in / Sign up

Export Citation Format

Share Document