scholarly journals Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

2020 ◽  
Vol 639 ◽  
pp. A4
Author(s):  
M. G. Rachid ◽  
J. Terwisscha van Scheltinga ◽  
D. Koletzki ◽  
H. Linnartz

Context. Complex organic molecules (COMs) have been largely identified through their characteristic rotational transitions in the gas of interstellar and circumstellar regions. Although these species are formed in the icy mantles that cover dust grains, the most complex species that has been unambiguously identified in the solid-phase to date is methanol (CH3OH). With the upcoming launch of the James Webb Space Telescope (JWST), this situation may change. The higher sensitivity, spectral and spatial resolution of the JWST will allow for the probing of the chemical inventory of ices in star-forming regions. In order to identify features of solid-state molecules in astronomical spectra, laboratory infrared spectra of COMs within astronomically relevant conditions are required. This paper is part of a series of laboratory studies focusing on the infrared spectra of frozen COMs embedded in ice matrices. These reflect the environmental conditions in which COMs are thought to be found. Aims. This work is aimed at characterizing the infrared features of acetone mixed in ice matrices containing H2O, CO2, CO, CH4, and CH3OH for temperatures ranging between 15 K and 160 K. Changes in the band positions and shapes due to variations in the temperature, ice composition, and morphology are reported. This work also points out the IR features that are considered the best promising tracers when searching for interstellar acetone-containing ices. Methods. Acetone-containing ices were grown at 15 K under high-vacuum conditions and infrared (IR) spectra (500–4000 cm−1/20–2.5 μm, 0.5 cm−1 resolution) in transmission mode were recorded using a Fourier transform infrared spectrometer. Spectra of the ices at higher temperatures are acquired during the heating of the sample (at a rate of 25 K h−1) up to 160 K. The changes in the infrared features for varying conditions were analyzed. Results. A large set of IR spectra of acetone-containing ices is presented and made available as a basis for interpreting current and future infrared astronomical spectra. The peak position and full width at half maximum of selected acetone bands have been measured for different ice mixtures and temperatures. The bands that are best suitable for acetone identification in astronomical spectra are: the C=O stretch mode, around 1710.3 cm−1 (5.847 μm), that lies in the 1715–1695 cm−1 (5.83–5.90 μm) range in the mixed ices; the CH3 symmetric deformation, around 1363.4 cm−1 (7.335 μm) that lies in the 1353–1373 cm−1 (7.28–7.39 μm) range in the mixed ices; and the CCC asymmetric stretch, around 1228.4 cm−1 (8.141 μm), that lies in the 1224–1245 cm−1 (8.16–8.03 μm) range in the mixed ices. The CCC asymmetric stretch band also exhibits potential as a remote probe of the ice temperature and composition; this feature is the superposition of two components that respond differently to temperature and the presence of CH3OH. All the spectra are available through the Leiden Ice Database.

2021 ◽  
Author(s):  
Héctor Carrascosa ◽  
Cristóbal González Díaz ◽  
Guillermo M. Muñoz Caro ◽  
Pedro C. Gómez ◽  
María Luz Sanz

<p>Hexamethylentetramine has drawn a lot of attention due to its potential to produce prebiotic species. This work aims to gain a better understanding in the chemical processes concerning methylamine under astrophysically relevant conditions. In particular, this work deeps into the formation of N-heterocycles in interstellar ice analogs exposed to UV radiation, which may lead to the formation of prebiotic species.</p> <p>Experimental simulations of interstellar ice analogs were carried out in ISAC. ISAC is an ultra-high vacuum chamber equipped with a cryostat, where gas and vapour species are frozen forming ice samples. Infrared and ultraviolet spectroscopy were used to monitor the solid phase, and quadrupole mass spectrometry served to measure the composition of the gas phase. The variety of species detected after UV irradiation of ices containing  methylamine revealed the presence of 12 species which have been already detected in the ISM, being 4 of them typically classified as complex organic molecules: formamide (HCONH<sub>2</sub>), methyl cyanide (CH<sub>3</sub>CN), CH<sub>3</sub>NH and CH<sub>3</sub>CHNH. Warming up of the irradiated CH<sub>3</sub>NH<sub>2</sub>-bearing ice samples lead to the formation of trimethylentriamine (TMT), a N-heterocycle precursor of HMT, and the subsequent synthesis of HMT at temperatures above 230 K.</p>


2020 ◽  
Vol 635 ◽  
pp. A48 ◽  
Author(s):  
S. Manigand ◽  
J. K. Jørgensen ◽  
H. Calcutt ◽  
H. S. P. Müller ◽  
N. F. W. Ligterink ◽  
...  

Context. Complex organic molecules are detected in many sources in the warm inner regions of envelopes surrounding deeply embedded protostars. Exactly how these species form remains an open question. Aims. This study aims to constrain the formation of complex organic molecules through comparisons of their abundances towards the Class 0 protostellar binary IRAS 16293–2422. Methods. We utilised observations from the ALMA Protostellar Interferometric Line Survey of IRAS 16293–2422. The species identification and the rotational temperature and column density estimation were derived by fitting the extracted spectra towards IRAS 16293–2422 A and IRAS 16293–2422 B with synthetic spectra. The majority of the work in this paper pertains to the analysis of IRAS 16293–2422 A for a comparison with the results from the other binary component, which have already been published. Results. We detect 15 different complex species, as well as 16 isotopologues towards the most luminous companion protostar IRAS 16293–2422 A. Tentative detections of an additional 11 isotopologues are reported. We also searched for and report on the first detections of methoxymethanol (CH3OCH2OH) and trans-ethyl methyl ether (t-C2H5OCH3) towards IRAS 16293–2422 B and the follow-up detection of deuterated isotopologues of acetaldehyde (CH2DCHO and CH3CDO). Twenty-four lines of doubly-deuterated methanol (CHD2OH) are also identified. Conclusions. The comparison between the two protostars of the binary system shows significant differences in abundance for some of the species, which are partially correlated to their spatial distribution. The spatial distribution is consistent with the sublimation temperature of the species; those with higher expected sublimation temperatures are located in the most compact region of the hot corino towards IRAS 16293–2422 A. This spatial differentiation is not resolved in IRAS 16293–2422 B and will require observations at a higher angular resolution. In parallel, the list of identified CHD2OH lines shows the need of accurate spectroscopic data including their line strength.


Author(s):  
M. G. Rachid ◽  
N. Brunken ◽  
D de Boe ◽  
G. Fedoseev ◽  
A. C. A. Boogert ◽  
...  

2020 ◽  
Vol 634 ◽  
pp. A103
Author(s):  
E. Dartois ◽  
M. Chabot ◽  
A. Bacmann ◽  
P. Boduch ◽  
A. Domaracka ◽  
...  

Aims. Methanol ice is embedded in interstellar ice mantles present in dense molecular clouds. We aim to measure the sputtering efficiencies starting from different ice mantles of varying compositions experimentally, in order to evaluate their potential impact on astrochemical models. The sputtering yields of complex organic molecules is of particular interest, since few mechanisms are efficient enough to induce a significant feedback to the gas phase. Methods. We irradiated ice film mixtures made of methanol and carbon dioxide of varying ratios with swift heavy ions in the electronic sputtering regime. We monitored the evolution of the infrared spectra as well as the species released to the gas phase with a mass spectrometer. Methanol (12C) and isotopically labelled 13C-methanol were used to remove any ambiguity on the measured irradiation products. Results. The sputtering of methanol embedded in carbon dioxide ice is an efficient process leading to the ejection of intact methanol in the gas phase. We establish that when methanol is embedded in a carbon-dioxide-rich mantle exposed to cosmic rays, a significant fraction (0.2–0.3 in this work) is sputtered as intact molecules. The sputtered fraction follows the time-dependent bulk composition of the ice mantle, the latter evolving with time due to the radiolysis-induced evolution of the bulk. If methanol is embedded in a carbon dioxide ice matrix, as the analyses of the spectral shape of the CO2 bending mode observations in some lines of sight suggest, the overall methanol sputtering yield is higher than if embedded in a water ice mantle. The sputtering is increased by a factor close to the dominant ice matrix sputtering yield, which is about six times higher for pure carbon dioxide ice when compared to water ice. These experiments are further constraining the cosmic-ray-induced ice mantle sputtering mechanisms important role in the gas-phase release of complex organic molecules from the interstellar solid phase.


2019 ◽  
Vol 15 (S350) ◽  
pp. 356-357
Author(s):  
J. Terwisscha van Scheltinga ◽  
N. F. W. Ligterink ◽  
A. C. A. Boogert ◽  
E. F. van Dishoeck ◽  
H. Linnartz

AbstractThe identification of complex organic molecules, COMs, in inter- and circumstellar gas phase environments is steadily increasing. The formation of such COMs takes largely place on the icy dust grains, as has been shown in recent laboratory studies. Until now solid state features of smaller molecular species have been directly identified in these environments. The presented work on acetaldehyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3) in different astronomically relevant ice environments and for temperatures in the range 15 to 160 Kelvin, provides the necessary tools to guide or interpret astronomical observations, specifically for upcoming James Webb Space Telescope observations.


Author(s):  
Kleomenis Barlos ◽  
Dimitrios Gatos ◽  
Spyros Mourtas ◽  
Andriana Nikoletou ◽  
Manolis Karavoltsos ◽  
...  

2019 ◽  
Vol 491 (1) ◽  
pp. 289-301 ◽  
Author(s):  
Killian Leroux ◽  
Jean-Claude Guillemin ◽  
Lahouari Krim

ABSTRACT Glycolaldehyde (CHOCH2OH) and ethylene glycol (HOCH2CH2OH) are among many complex organic molecules detected in the interstellar medium (ISM). Astrophysical models proposed very often that the formation of these compounds would be directly linked to the hydrogenation of glyoxal (CHOCHO), a potential precursor which is not yet detected in the ISM. We have performed, in this work, surface and bulk hydrogenations of solid CHOCHO under ISM conditions in order to confirm or invalidate the astrophysical modelling of glyoxal transformation. Our results show that the hydrogenation of glyoxal does not lead to the formation of detectable amounts of heavier organic molecules such as glycolaldehyde and ethylene glycol but rather to lighter CO-bearing species such as CO, H2CO, and CO–H2CO, a reaction intermediate resulting from an H-addition–elimination process on CHOCHO and where CO is linked to H2CO. The solid phase formation of such a reaction intermediate has been confirmed through the neon matrix isolation of CO–H2CO species. Additionally, the CHOCHO + H solid-state reaction might also lead to the production of CH3OH formed under our experimental conditions as a secondary product resulting from the hydrogenation of formaldehyde.


2018 ◽  
Vol 620 ◽  
pp. A170 ◽  
Author(s):  
J. K. Jørgensen ◽  
H. S. P. Müller ◽  
H. Calcutt ◽  
A. Coutens ◽  
M. N. Drozdovskaya ◽  
...  

Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the D- and 13C-bearing variants, are sensitive to the densities, temperatures and timescales characteristic of the environment in which they form, and can therefore provide important constraints on the formation routes and conditions of individual species. Aims. The aim of this paper is to systematically survey the deuteration and the 13C content of a variety of oxygen-bearing complex organic molecules on solar system scales toward the “B component” of the protostellar binary IRAS16293–2422. Methods. We have used the data from an unbiased molecular line survey of the protostellar binary IRAS16293−2422 between 329 and 363 GHz from the Atacama Large Millimeter/submillimeter Array (ALMA). The data probe scales of 60 AU (diameter) where most of the organic molecules are expected to have sublimated off dust grains and be present in the gas phase. The deuterated and 13C isotopic species of ketene, acetaldehyde and formic acid, as well as deuterated ethanol, are detected unambiguously for the first time in the interstellar medium. These species are analysed together with the 13C isotopic species of ethanol, dimethyl ether and methyl formate along with mono-deuterated methanol, dimethyl ether and methyl formate. Results. The complex organic molecules can be divided into two groups with one group, the simpler species, showing a D/H ratio of ≈2% and the other, the more complex species, D/H ratios of 4–8%. This division may reflect the formation time of each species in the ices before or during warm-up/infall of material through the protostellar envelope. No significant differences are seen in the deuteration of different functional groups for individual species, possibly a result of the short timescale for infall through the innermost warm regions where exchange reactions between different species may be taking place. The species show differences in excitation temperatures between 125 and 300 K. This likely reflects the binding energies of the individual species, in good agreement with what has previously been found for high-mass sources. For dimethyl ether, the 12C/13C ratio is found to be lower by up to a factor of 2 compared to typical ISM values similar to what has previously been inferred for glycolaldehyde. Tentative identifications suggest that the same may apply for 13C isotopologues of methyl formate and ethanol. If confirmed, this may be a clue to their formation at the late prestellar or early protostellar phases with an enhancement of the available 13C relative to 12C related to small differences in binding energies for CO isotopologues or the impact of FUV irradiation by the central protostar. Conclusions. The results point to the importance of ice surface chemistry for the formation of these complex organic molecules at different stages in the evolution of embedded protostars and demonstrate the use of accurate isotope measurements for understanding the history of individual species.


Sign in / Sign up

Export Citation Format

Share Document