Photon and thermal processing of CH3NH2-bearing ices. Synthesis of prebiotic species at low temperature (such as formamide, ethylamine, and methylcyanide), and N-heterocycles during warm up.

2021 ◽  
Author(s):  
Héctor Carrascosa ◽  
Cristóbal González Díaz ◽  
Guillermo M. Muñoz Caro ◽  
Pedro C. Gómez ◽  
María Luz Sanz

<p>Hexamethylentetramine has drawn a lot of attention due to its potential to produce prebiotic species. This work aims to gain a better understanding in the chemical processes concerning methylamine under astrophysically relevant conditions. In particular, this work deeps into the formation of N-heterocycles in interstellar ice analogs exposed to UV radiation, which may lead to the formation of prebiotic species.</p> <p>Experimental simulations of interstellar ice analogs were carried out in ISAC. ISAC is an ultra-high vacuum chamber equipped with a cryostat, where gas and vapour species are frozen forming ice samples. Infrared and ultraviolet spectroscopy were used to monitor the solid phase, and quadrupole mass spectrometry served to measure the composition of the gas phase. The variety of species detected after UV irradiation of ices containing  methylamine revealed the presence of 12 species which have been already detected in the ISM, being 4 of them typically classified as complex organic molecules: formamide (HCONH<sub>2</sub>), methyl cyanide (CH<sub>3</sub>CN), CH<sub>3</sub>NH and CH<sub>3</sub>CHNH. Warming up of the irradiated CH<sub>3</sub>NH<sub>2</sub>-bearing ice samples lead to the formation of trimethylentriamine (TMT), a N-heterocycle precursor of HMT, and the subsequent synthesis of HMT at temperatures above 230 K.</p>

2020 ◽  
Vol 639 ◽  
pp. A4
Author(s):  
M. G. Rachid ◽  
J. Terwisscha van Scheltinga ◽  
D. Koletzki ◽  
H. Linnartz

Context. Complex organic molecules (COMs) have been largely identified through their characteristic rotational transitions in the gas of interstellar and circumstellar regions. Although these species are formed in the icy mantles that cover dust grains, the most complex species that has been unambiguously identified in the solid-phase to date is methanol (CH3OH). With the upcoming launch of the James Webb Space Telescope (JWST), this situation may change. The higher sensitivity, spectral and spatial resolution of the JWST will allow for the probing of the chemical inventory of ices in star-forming regions. In order to identify features of solid-state molecules in astronomical spectra, laboratory infrared spectra of COMs within astronomically relevant conditions are required. This paper is part of a series of laboratory studies focusing on the infrared spectra of frozen COMs embedded in ice matrices. These reflect the environmental conditions in which COMs are thought to be found. Aims. This work is aimed at characterizing the infrared features of acetone mixed in ice matrices containing H2O, CO2, CO, CH4, and CH3OH for temperatures ranging between 15 K and 160 K. Changes in the band positions and shapes due to variations in the temperature, ice composition, and morphology are reported. This work also points out the IR features that are considered the best promising tracers when searching for interstellar acetone-containing ices. Methods. Acetone-containing ices were grown at 15 K under high-vacuum conditions and infrared (IR) spectra (500–4000 cm−1/20–2.5 μm, 0.5 cm−1 resolution) in transmission mode were recorded using a Fourier transform infrared spectrometer. Spectra of the ices at higher temperatures are acquired during the heating of the sample (at a rate of 25 K h−1) up to 160 K. The changes in the infrared features for varying conditions were analyzed. Results. A large set of IR spectra of acetone-containing ices is presented and made available as a basis for interpreting current and future infrared astronomical spectra. The peak position and full width at half maximum of selected acetone bands have been measured for different ice mixtures and temperatures. The bands that are best suitable for acetone identification in astronomical spectra are: the C=O stretch mode, around 1710.3 cm−1 (5.847 μm), that lies in the 1715–1695 cm−1 (5.83–5.90 μm) range in the mixed ices; the CH3 symmetric deformation, around 1363.4 cm−1 (7.335 μm) that lies in the 1353–1373 cm−1 (7.28–7.39 μm) range in the mixed ices; and the CCC asymmetric stretch, around 1228.4 cm−1 (8.141 μm), that lies in the 1224–1245 cm−1 (8.16–8.03 μm) range in the mixed ices. The CCC asymmetric stretch band also exhibits potential as a remote probe of the ice temperature and composition; this feature is the superposition of two components that respond differently to temperature and the presence of CH3OH. All the spectra are available through the Leiden Ice Database.


2020 ◽  
Vol 493 (1) ◽  
pp. 821-829
Author(s):  
H Carrascosa ◽  
G A Cruz-Díaz ◽  
G M Muñoz Caro ◽  
E Dartois ◽  
Y-J Chen

ABSTRACT At the low temperatures found in the interior of dense clouds and circumstellar regions, along with H2O and smaller amounts of species such as CO, CO2 or CH3OH, the infrared features of CH4 have been observed on icy dust grains. Ultraviolet (UV) photons induce different processes in ice mantles, affecting the molecular abundances detected in the gas phase. This work aims to understand the processes that occur in a pure CH4 ice mantle subjected to UV irradiation. We studied photon-induced processes for the different photoproducts arising in the ice upon UV irradiation. Experiments were carried out in ISAC, an ultra-high vacuum chamber equipped with a cryostat and an F-type UV lamp reproducing the secondary UV field induced by cosmic rays in dense clouds. Infrared spectroscopy and quadrupole mass spectrometry were used to monitor the solid and gas phases, respectively, during the formation, irradiation and warming-up of the ice. Direct photodesorption of pure CH4 was not observed. UV photons form CHx· and H· radicals, leading to photoproducts such as H2, C2H2, C2H6 and C3H8. Evidence for the photodesorption of C2H2 and photochemidesorption of C2H6 and C3H8 was found; the latter species is so far the largest molecule found to photochemidesorb. 13CH4 experiments were also carried out to confirm the reliability of these results.


Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


1978 ◽  
Vol 45 ◽  
pp. 287-291 ◽  
Author(s):  
Y. Shiraki ◽  
Y. Katayama ◽  
K.L.I. Kobayashi ◽  
K.F. Komatsubara

1998 ◽  
Vol 553 ◽  
Author(s):  
M. GIL-GAVATZ ◽  
D. Rouxel ◽  
P. Pigeat ◽  
B. Weber ◽  
J.-M. Dubois

AbstractSurface segregation of aluminium was observed during oxidation experiments of icosahedral A162Cu25.5 Fel12.5, performed in-situ and at different temperatures in the ultra-high vacuum chamber of a scanning Auger electron spectrometer. Two regimes, below and above 770K, were observed in relation with severe segregation of Al atoms at the surface for T > 770K. We postulate that this temperature dependent segregation rate is representative of the aluminium transport towards the surface of the quasicrystal. By analogy with classical diffusion experiments, we can thus determine reasonable estimates of the activation energy for Al self-diffusion in this quasicrystal. The results are consistent with the existence of phason flips below 770K and thermal vacancies above this temperature.


1997 ◽  
Vol 468 ◽  
Author(s):  
A. Demchuk ◽  
J. Porter ◽  
B. Koplitz

ABSTRACTThe present work reports on the formation of GaN-containing clusters from metalorganic precursors by combining pulsed laser photolysis and pulsed nozzle methods. Ammonia (NH3) and triethylgallium (C2H5)3Ga (TEG) or trimethylgallium (CH3)3Ga (TMG) with He, Ar, or N2 as the carrier gas are introduced into a high vacuum chamber via a specialized dual pulsed nozzle source. The light from an ArF excimer laser (193 nm, 23 ns FWHM) is focused into the mixing and reaction region of the nozzle source, and the products are then mass analyzed with a quadrupole mass spectrometer. Efficient laser-assisted growth of (GaN)x-containing clusters is shown with this technique.


2015 ◽  
Vol 6 ◽  
pp. 1927-1934 ◽  
Author(s):  
Antoine Hinaut ◽  
Rémy Pawlak ◽  
Ernst Meyer ◽  
Thilo Glatzel

Large organic molecules are of important interest for organic-based devices such as hybrid photovoltaics or molecular electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical reactivity, depositing molecules by thermal evaporation becomes challenging. A recent way to deposit molecules in clean conditions is Electrospray Ionization (ESI). ESI keeps the possibility to work with large molecules, to introduce them in vacuum, and to deposit them on a large variety of surfaces. Here, ESI has been successfully applied to deposit triply fused porphyrin molecules on an insulating KBr(001) surface in UHV environment. Different deposition coverages have been obtained and characterization of the surface by in-situ atomic force microscopy working in the non-contact mode shows details of the molecular structures adsorbed on the surface. We show that UHV-ESI, can be performed on insulating surfaces in the sub-monolayer regime and to single molecules which opens the possibility to study a variety of complex molecules.


1991 ◽  
Vol 5 (10) ◽  
pp. 769-775
Author(s):  
S Kaihara ◽  
T Nakamura ◽  
T Murayama ◽  
T Irisawa ◽  
T Kono

2002 ◽  
Vol 743 ◽  
Author(s):  
Alexander Demchuk ◽  
Michael Lynch ◽  
Steven Simpson ◽  
Brent Koplitz

ABSTRACTThe present work reports on the study of III-V gas phase reactivity in constrained gas pulse expansions of trimethylgallium (TMGa) and oxygen derivative compounds (H2O, CH3OH, O(CH3)2) with and without ammonia. The precursors are introduced separately into a high vacuum chamber via a multipulsed gas nozzle assembly. The gas mixtures are then exposed to a UV pulse from an ArF excimer laser (λ=193 nm) and the products are mass analyzed with a quadrupole mass spectrometer. The efficient laser-assisted growth of Ga-O-containing clusters in the form of [(CH3)2GaOR] x, where R is H or CH3, has been revealed. Different behavior can be seen in the reaction of TMG and the oxygen species depending on the presence of H atoms bonded to the oxygen. Significant influence of NH3 on cluster formation and oxygen incorporation is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document